numerical root finding procedures
14 ビュー (過去 30 日間)
古いコメントを表示
trying to solve the part under else. eover and Re are known, but still leaves me with (f) on both side of the original colebrook equation. 1/sqrt(f) = -2*log10(eoverD/3.7 + 2.51/Re/sqrt(f)). Please help, a bit stuck.
Re = V*D1 / nu;
% Check for laminar flow.
if Re < 2300
F = 64 / Re;
else
F(f)=1/sqrt(f)+2*log10(eoverD/3.7 + 2.51/Re/sqrt(f));
end
3 件のコメント
採用された回答
the cyclist
2013 年 8 月 19 日
編集済み: the cyclist
2013 年 8 月 19 日
You should be able to use the function fzero() to solve for f in your implicit equation.
>> doc fzero
for details.
I think this will do it, but definitely check:
darbyFormula = @(x) 1/sqrt(x)+2*log10(eoverD/3.7 + 2.51/Re/sqrt(x));
f = fzero(darbyFormula,1)
0 件のコメント
その他の回答 (1 件)
Walter Roberson
2013 年 8 月 19 日
If you do some algebraic manipulation, you get
x = 0.3340248829e22 / (-0.5020000000e11 * lambertw(.4586822894 * Re * exp(.1239681863 * eoverD * Re)) + 6223202955 * eoverD * Re)^2
with no searching (provided that eoverD already has a value)
lambertw is in the Symbolic Toolbox. If you do not have that, then see http://www.mathworks.com/matlabcentral/newsreader/view_thread/32527
0 件のコメント
参考
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!