Why linsolve cannot solve this very simple equation?

9 ビュー (過去 30 日間)
Mr M. 2021 年 4 月 19 日

A = [4,2,2; 5,1,3; 6,0,4];
B = [60; 70; 80];
X = linsolve(A,B)
The solution should be 6, 7, 11, since:
4x6 + 2x7 + 2x11 = 60
5x6 + 1x7 + 3x11 = 70
6x6 + 0x7 + 4x11 = 80
But I get the following answer:
Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND =
7.401487e-18.
X = [0; 10; 20]
Why?

サインインしてコメントする。

採用された回答

Stephan 2021 年 4 月 19 日

To solve this, the rank should be 3. Row 1 and 3 are not linear independent.
A = [4,2,2; 5,1,3; 6,0,4]
B = [60; 70; 80];
r1 = rank(A)
r2 = rank([A, B])
linsolve gives a correct solution, because there are more then 1 solutions, due to the rank:
>> X = linsolve(A,B)
Test = A*X
Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND =
7.401487e-18.
X =
0
10
20
Test =
60
70
80

サインインしてコメントする。

その他の回答 (1 件)

Steven Lord 2021 年 4 月 19 日
The vector [6; 7; 11] is a solution to the problem but it is not the only solution.
A = [4,2,2; 5,1,3; 6,0,4];
B = [60; 70; 80];
sol1 = [6; 7; 11];
check = A*sol1-B; % should be close to 0
[sol1, check]
ans = 3×2
6 0 7 0 11 0
N = null(A); % A*N is close to the 0 vector
sol2 = sol1 + N; % Since A*sol1 = B and A*N = 0, A*(sol1+N) = B+0 = B
check2 = A*sol2-B; % should also be close to 0
[sol2, check2]
ans = 3×2
5.4655 0 7.2673 0 11.8018 0
sol3 = sol1 + 42*N; % A*(sol1+42*N) = A*sol1 + 42*A*N = B+0 = B
[sol3, A*sol3-B] % Also close to 0
ans = 3×2
-16.4499 -0.0000 18.2250 -0.0000 44.6749 0.0000

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeSystems of Nonlinear Equations についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by