How to find the equilibrium points of dynamics system?

27 ビュー (過去 30 日間)
RoBoTBoY
RoBoTBoY 2021 年 4 月 4 日
回答済み: Sam Chak 2023 年 8 月 31 日
Hello! I have this scalar dynamic system.
How to find the equilibrium points in order to check the stability with two methods Lyapunov?
Thanks in advance!
What i do? I solve in matlab this f(x) = 0 and find x=1 x=2 and x=2

回答 (1 件)

Sam Chak
Sam Chak 2023 年 8 月 31 日
The system has two equilibrium points ( and ). It is possible to evaluate the system's stability through a graphical method. From the vector field, we can observe how the system's state will evolve near these equilibrium points.
[T, X] = meshgrid(-0:5/15:5, 0:3/21:3);
S = - (X - 1).*(X - 2).^2;
L = sqrt(1 + S.^2);
U = 1./L;
V = S./L;
quiver(T, X, U, V, 0.5)
axis tight
xlabel('t'), ylabel('x(t)')
For , it takes an eternity to converge to the equilibrium. For , the trajectory converges in finite time.
fcn = @(t, x) - (x - 1).*(x - 2).^2;
[t, x] = ode45(@(t, x) fcn(t, x), [0 2000], 2.01);
figure(2)
plot(t, x), grid on, xlabel('t'), ylabel('x(t)')
[t, x] = ode45(@(t, x) fcn(t, x), [0 200], 1.99);
figure(3)
plot(t, x), grid on, xlabel('t'), ylabel('x(t)')

カテゴリ

Help Center および File ExchangeMatrix Computations についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by