The system has two equilibrium points ( and ). It is possible to evaluate the system's stability through a graphical method. From the vector field, we can observe how the system's state will evolve near these equilibrium points.
[T, X] = meshgrid(-0:5/15:5, 0:3/21:3);
S = - (X - 1).*(X - 2).^2;
L = sqrt(1 + S.^2);
U = 1./L;
V = S./L;
quiver(T, X, U, V, 0.5)
axis tight
xlabel('t'), ylabel('x(t)')
For , it takes an eternity to converge to the equilibrium. For , the trajectory converges in finite time.