現在この質問をフォロー中です
- フォローしているコンテンツ フィードに更新が表示されます。
- コミュニケーション基本設定に応じて電子メールを受け取ることができます。
coefficients of a difference equation?
1 回表示 (過去 30 日間)
古いコメントを表示
Hello everybody!
How to find the coefficients of this difference equation in matlab in order to filter a music signal?
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/529094/image.jpeg)
Thanks in advance!
18 件のコメント
Mathieu NOE
2021 年 2 月 23 日
helo
this looks like an echo flter ... but the answer is in the question , you have written all coefficients of the equation - !
pretty much what is done here :
infile='DirectGuitar.wav';
outfile='out_echo.wav';
% read the sample waveform
[x,Fs] = audioread(infile);
% normalize x to +/- 1 amplitude
x = x ./ (max(abs(x)));
% parameters
N_delay=20; % delay in samples
C = 0.7; % amplitude of direct sound
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
y = zeros(length(x),1); % create empty out vector
y(1:N_delay)=x(1:N_delay); % to avoid referencing of negative samples
% for each sample > N_delay
for i = (N_delay+1):length(x)
y(i) = C*x(i) + (1-C)*(x(i-N_delay)); % add delayed sample
end
% write output
% normalize y to +/- 1 amplitude
y = y ./ (max(abs(y)));
audiowrite(outfile, y, Fs);
figure(1)
hold on
plot(x,'r');
plot(y,'b');
title('Echoed and original Signal');
sound(y,Fs);
RoBoTBoY
2021 年 2 月 23 日
Yes, it is an echo filter and I want to delay 0.15 sec from my original signal
RoBoTBoY
2021 年 2 月 23 日
This is the original equation
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/529144/image.jpeg)
where: c = 0.6 but i don't know the P in order to delay my signal
RoBoTBoY
2021 年 2 月 23 日
Thank so much!! You were very helpful!
Do you know how to implement a reverb filter?
I know that implement with three echo filter in series, but I don't know how to do that in matlab
Mathieu NOE
2021 年 2 月 24 日
here is it : 3 filters in series :
infile='DirectGuitar.wav';
outfile='out_reverb.wav';
% read the sample waveform
[x,Fs] = audioread(infile);
% normalize x to +/- 1 amplitude
x = x ./ (max(abs(x)));
% parameters (3 delay filters in series)
N1_delay=15; % delay in samples
C1 = 0.7; % amplitude of direct sound
N2_delay=20; % delay in samples
C2 = 0.6; % amplitude of direct sound
N3_delay=50; % delay in samples
C3 = 0.5; % amplitude of direct sound
N_delay = max([N1_delay N2_delay N3_delay]);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% initialization %
y1 = zeros(length(x),1); % create empty out vector
y2 = y1;
y3 = y1;
y1(1:N_delay)=x(1:N_delay); % to avoid referencing of negative samples
y2(1:N_delay)=x(1:N_delay); % to avoid referencing of negative samples
y3(1:N_delay)=x(1:N_delay); % to avoid referencing of negative samples
% for each sample > N_delay
for i = (N_delay+1):length(x)
y1(i) = C1*x(i) + (1-C1)*(x(i-N1_delay)); % add delayed sample
y2(i) = C2*y1(i) + (1-C2)*(y1(i-N2_delay)); % add delayed sample
y3(i) = C3*y2(i) + (1-C3)*(y2(i-N3_delay)); % add delayed sample
end
% write output
% normalize y to +/- 1 amplitude
y3 = y3 ./ (max(abs(y3)));
audiowrite(outfile, y3, Fs);
figure(1)
hold on
plot(x,'r');
plot(y3,'b');
title('Echoed and original Signal');
sound(y3,Fs);
Mathieu NOE
2021 年 2 月 24 日
have you tried to do a fft of it ?
example below :
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% load signal
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% data
[data,Fs] = audioread('test_voice.wav');
channel = 1;
signal = data(:,channel);
samples = length(signal);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% FFT parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
NFFT = 4096; %
OVERLAP = 0.75;
% spectrogram dB scale
spectrogram_dB_scale = 80; % dB range scale (means , the lowest displayed level is XX dB below the max level)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% options
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% if you are dealing with acoustics, you may wish to have A weighted
% spectrums
% option_w = 0 : linear spectrum (no weighting dB (L) )
% option_w = 1 : A weighted spectrum (dB (A) )
option_w = 0;
%% decimate (if needed)
% NB : decim = 1 will do nothing (output = input)
decim = 4;
if decim>1
signal = decimate(signal,decim);
Fs = Fs/decim;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% display 1 : averaged FFT spectrum
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[freq, sensor_spectrum] = myfft_peak(signal,Fs,NFFT,OVERLAP);
% convert to dB scale (ref = 1)
sensor_spectrum_dB = 20*log10(sensor_spectrum);
% apply A weigthing if needed
if option_w == 1
pondA_dB = pondA_function(freq);
sensor_spectrum_dB = sensor_spectrum_dB+pondA_dB;
my_ylabel = ('Amplitude (dB (A))');
else
my_ylabel = ('Amplitude (dB (L))');
end
figure(1),plot(freq,sensor_spectrum_dB,'b');grid
title(['Averaged FFT Spectrum / Fs = ' num2str(Fs) ' Hz / Delta f = ' num2str(freq(2)-freq(1)) ' Hz ']);
xlabel('Frequency (Hz)');ylabel(my_ylabel);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% display 2 : time / frequency analysis : spectrogram demo
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[sg,fsg,tsg] = specgram(signal,NFFT,Fs,hanning(NFFT),floor(NFFT*OVERLAP));
% FFT normalisation and conversion amplitude from linear to dB (peak)
sg_dBpeak = 20*log10(abs(sg))+20*log10(2/length(fsg)); % NB : X=fft(x.*hanning(N))*4/N; % hanning only
% apply A weigthing if needed
if option_w == 1
pondA_dB = pondA_function(fsg);
sg_dBpeak = sg_dBpeak+(pondA_dB*ones(1,size(sg_dBpeak,2)));
my_title = ('Spectrogram (dB (A))');
else
my_title = ('Spectrogram (dB (L))');
end
% saturation of the dB range :
% saturation_dB = 60; % dB range scale (means , the lowest displayed level is XX dB below the max level)
min_disp_dB = round(max(max(sg_dBpeak))) - spectrogram_dB_scale;
sg_dBpeak(sg_dBpeak<min_disp_dB) = min_disp_dB;
% plots spectrogram
figure(2);
imagesc(tsg,fsg,sg_dBpeak);colormap('jet');
axis('xy');colorbar('vert');grid
title([my_title ' / Fs = ' num2str(Fs) ' Hz / Delta f = ' num2str(fsg(2)-fsg(1)) ' Hz ']);
xlabel('Time (s)');ylabel('Frequency (Hz)');
function pondA_dB = pondA_function(f)
% dB (A) weighting curve
n = ((12200^2*f.^4)./((f.^2+20.6^2).*(f.^2+12200^2).*sqrt(f.^2+107.7^2).*sqrt(f.^2+737.9^2)));
r = ((12200^2*1000.^4)./((1000.^2+20.6^2).*(1000.^2+12200^2).*sqrt(1000.^2+107.7^2).*sqrt(1000.^2+737.9^2))) * ones(size(f));
pondA = n./r;
pondA_dB = 20*log10(pondA(:));
end
function [freq_vector,fft_spectrum] = myfft_peak(signal, Fs, nfft, Overlap)
% FFT peak spectrum of signal (example sinus amplitude 1 = 0 dB after fft).
% Linear averaging
% signal - input signal,
% Fs - Sampling frequency (Hz).
% nfft - FFT window size
% Overlap - buffer overlap % (between 0 and 0.95)
signal = signal(:);
samples = length(signal);
% fill signal with zeros if its length is lower than nfft
if samples<nfft
s_tmp = zeros(nfft,1);
s_tmp((1:samples)) = signal;
signal = s_tmp;
samples = nfft;
end
% window : hanning
window = hanning(nfft);
window = window(:);
% compute fft with overlap
offset = fix((1-Overlap)*nfft);
spectnum = 1+ fix((samples-nfft)/offset); % Number of windows
% % for info is equivalent to :
% noverlap = Overlap*nfft;
% spectnum = fix((samples-noverlap)/(nfft-noverlap)); % Number of windows
% main loop
fft_spectrum = 0;
for i=1:spectnum
start = (i-1)*offset;
sw = signal((1+start):(start+nfft)).*window;
fft_spectrum = fft_spectrum + (abs(fft(sw))*4/nfft); % X=fft(x.*hanning(N))*4/N; % hanning only
end
fft_spectrum = fft_spectrum/spectnum; % to do linear averaging scaling
% one sidded fft spectrum % Select first half
if rem(nfft,2) % nfft odd
select = (1:(nfft+1)/2)';
else
select = (1:nfft/2+1)';
end
fft_spectrum = fft_spectrum(select);
freq_vector = (select - 1)*Fs/nfft;
end
Mathieu NOE
2021 年 2 月 25 日
this will do averaged fft and spectrogram analysis of any signal , and in case it has some periodic content, it will show up as a peak in the spectrum (at the dominant frequency)
otherwise , if you are sure that your signal is basically a decaying (damped) sinus wave, you can also simply compute the time intervals (= period of oscillation) between consecutives crossing points (positive or negative slope of signal) , given a certain threshold , see example on steady sinus wave attached
RoBoTBoY
2021 年 2 月 25 日
Hello again!
I have these coefficients from a filter for dereverberation:
b = [6 0 0 0 0 0 0];
a = [1 0 2.45 0 2 0 0.55];
and this is the difference equation:
dereverb(n) = 6*reverb(n)-2.45*dereverb(n-2)-2*dereverb(n-4)-0.55*dereverb(n-6);
also I have these coefficients from a filter for reverb:
b = [0.1664 0 0.4084 0 0.3341 0 0.0911];
a = [1 0 0 0 0 0 0];
and this is the difference equation:
y(n) = 0.1664*x(n)+0.4084*x(n-2)+0.3341*x(n-4)+0.0911*x(n-6);
Have I calculated the dereverberation coefficients correctly? If yes, how to filter a reverb signal through dereverberation filter?
Thanks
Mathieu NOE
2021 年 2 月 26 日
hello
IMO, your dereverb filter is incorrect. I understand that you take the reverb filter (a FIR filter) and inverse numerator / denominator to create the dereverb filter. But that does not generate a causal , stable and realizable dereverb filter.
It is unstable as you can see by generating the impulse response :
b = [6 0 0 0 0 0 0];
a = [1 0 2.45 0 2 0 0.55];
dimpulse(b,a)
Mathieu NOE
2021 年 2 月 26 日
the usual technique used in acoustic room compensations , is to make a time delayed version of the flipped FIR filter
you can do that by creating the flipped FIR :
b_flipped = flipud(b')'
then you will see that putting the two filters in series lead to a perfectly flat tranfer function, that is , the impulse response of both filters in series is a sharp pulse (Dirac)
plot(conv(flipud(b')',b))
for your dereverb simulation, you only need to rewritte the difference equation based on b_flipped coefficients (as for the reverb case)
RoBoTBoY
2021 年 2 月 28 日
編集済み: RoBoTBoY
2021 年 2 月 28 日
I wrote this:
b_dereverb = [4.6297 0 0 0 0 0 0];
a_dereverb = [1 0 2 0 1.3333 0 4];
flipped_b_dereverb = flipud(b_dereverb')';
flipped_a_dereverb = flipud(a_dereverb')';
y_derevereration = filter(flipped_b_dereverb,flipped_a_dereverb,reverb_piano);
y_derevereration = y_derevereration./(max(abs(y_derevereration))); % normalization of dereverb piano
figure(41);
plot(y_derevereration);
title('Dereverb Signal');
xlabel('Time');
pause(3);
sound(y_derevereration,Fs_piano);
But I don't have the expectantly results. I got the same reverb signal.
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/534484/image.jpeg)
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/534489/image.jpeg)
Why that?
Mathieu NOE
2021 年 3 月 1 日
hello
the "flip" technique applies only on FIR filter , not IIR; you can see that in many applications dealing with room acoustcs compesntion (electronic equalization of loudspeakers)
infile='DirectGuitar.wav';
outfile1='out_reverb2.wav';
outfile2='out_reverb_derev.wav';
% read the sample waveform
[x,Fs] = audioread(infile);
% normalize x to +/- 1 amplitude
x = x ./ (max(abs(x)));
%%%%%% reverb using FIR filter %%%%%%%%%%%%%%
% b = [0.1664 0 0.4084 0 0.3341 0 0.0911];
% a = [1 0 0 0 0 0 0];
% and this is the difference equation:
y = x;
for n = 7:length(x)
y(n) = 0.1664*x(n)+0.4084*x(n-2)+0.3341*x(n-4)+0.0911*x(n-6);
end
% write output
% normalize y to +/- 1 amplitude
y = y ./ (max(abs(y)));
audiowrite(outfile1, y, Fs);
%%%%%% dereverb using flipped FIR filter %%%%%%%%%%%%%%
% b_flipped = flipud(b')'
% b = [0.0911 0 0.3341 0 0.4084 0 0.1664];
% a = [1 0 0 0 0 0 0];
% and this is the difference equation:
y2 = y;
for n = 7:length(y)
y2(n) = 0.0911*y(n)+0.3341*y(n-2)+0.4084*y(n-4)+0.1664*y(n-6);
end
% write output
% normalize y to +/- 1 amplitude
y2 = y2 ./ (max(abs(y2)));
audiowrite(outfile2, y2, Fs);
figure(1)
hold on
plot(x,'r');
plot(y2,'b');
title('Echoed and original Signal');
sound(y2,Fs);
Mathieu NOE
2021 年 3 月 2 日
should be working, I tested it on another wav file and there was some improvements, even though the reverb + dereverb process was creating some masking effects - the final wav file sound is not as clean as the original one.
maybe there are more advanced methods...as attached papers
回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Pulsed Waveforms についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!エラーが発生しました
ページに変更が加えられたため、アクションを完了できません。ページを再度読み込み、更新された状態を確認してください。
Web サイトの選択
Web サイトを選択すると、翻訳されたコンテンツにアクセスし、地域のイベントやサービスを確認できます。現在の位置情報に基づき、次のサイトの選択を推奨します:
また、以下のリストから Web サイトを選択することもできます。
最適なサイトパフォーマンスの取得方法
中国のサイト (中国語または英語) を選択することで、最適なサイトパフォーマンスが得られます。その他の国の MathWorks のサイトは、お客様の地域からのアクセスが最適化されていません。
南北アメリカ
- América Latina (Español)
- Canada (English)
- United States (English)
ヨーロッパ
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom(English)
アジア太平洋地域
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)