Calculate Sn (like median absolute deviation) using matlab.
4 ビュー (過去 30 日間)
古いコメントを表示
Hi, I'm trying to compute Sn value based on : "Alternatives to the Median Absolute Deviation Peter J. Rousseeuw and Christophe Croux" paperwork.
According to this article:
Sn = c*median_i{median_j|xi - xj|}
For each i we compute the median of {|xi-xj|; j = 1,...,n}. This yields n numbers, the median of which gives our final estimate Sn. C is constant value.
I have Y matrix of size 10000 x 2000 (i = 2000, j = 10000) Because of the size, the simplest loop method:
for i = 1 : size(Y,2)
for j = 1 : size(Y,1)
a(j) = median( abs( Y(:,i)-Y(j,i) ) );
end
Sn(i) = c * median(a);
end
is time consuming, so is no good at all. I'm matlab newbie and I don't know how to use _repmat _ function which will be - as I guess - very helpful. Can I ask you for help, how to write this so that the computation time will be comparable to _mad _ function?
0 件のコメント
採用された回答
Andrei Bobrov
2013 年 4 月 18 日
編集済み: Andrei Bobrov
2013 年 4 月 18 日
s = [3 1130;
4 1527;
3 907;
2 878;
4 995];
k = permute(abs( bsxfun(@minus,s,permute(s,[3 2 1])) ),[1 3 2]);
out = squeeze(median(median(k)));
ADD
out = zeros(1,size(s,2));
for jj = 1:size(s,2)
out(jj) = median(median(abs(bsxfun(@minus,s(:,jj),s(:,jj)'))));
end
ADD2 use function mad from Statistics Toolbox
out = mad(s,1);
2 件のコメント
その他の回答 (2 件)
Image Analyst
2013 年 4 月 18 日
I think you're totally misinterpreting the formula. You don't look at the difference of all possible pairs of points - that would take forever and isn't what the formula says. Look at Wikipedia: http://en.wikipedia.org/wiki/Median_absolute_deviation For each element, you'd have a million differences. And there are a million elements so you'd have a billion values. No wonder it takes forever! The i and j DO NOT REFER TO ROW AND COLUMN. They refer to element, or "linear index" in MATLAB lingo.
I think what they mean is to take the mean over all elements (pixels) and then take the median of the differences, which is totally different. So
% Get the median value of all elements (pixels).
medianOfWholeMatrix = median(Y(:));
% Find the difference between each element and the overall median.
differenceImage = double(Y) - medianOfWholeMatrix;
% Now take the median of that:
madValue = median(differenceImage (:));
This should be substantially faster, not to mention correct.
3 件のコメント
Image Analyst
2013 年 4 月 18 日
編集済み: Image Analyst
2013 年 4 月 18 日
Their adaption of MAD might do something different. You could do the same thing on a column-by-column basis. If you want to do that, you could just extract a column at a time and put it in a loop
for col = 1 : size(Y, 2)
% Get the median value of all elements (pixels) in one column.
medianOfWholeColumn = median(Y(:, col));
% Find the difference between each element and the overall median.
differenceImage = double(Y(:, col)) - medianOfWholeColumn ;
% Now take the median of that:
madValue(col) = median(differenceImage (:));
end
Sn = c * madValue;
pete
2016 年 4 月 19 日
My suggestion - seems to work:
function Sn = RousseeuwCrouxSn(X)
% Compute the measure of scale 'Sn', from Rousseeuw & Croux (1993)
%
% A robust alternative to MADn for statistical outlier identification.
% Unlike MADn, Sn does not make an assumption of symmetry, so in
% principle should be more robust to skewed distributions.
%
% The outputs of this function have been validated against equivalent
% function in Maple(tm).
%
% Example: X = [1 5 2 2 7 4 1 5]
% Sn = RousseeuwCrouxSn(X) % should give 3.015
%
% Requires: none
%
% See also: mad.m
%
% Author(s): Pete R Jones <petejonze@gmail.com>
%
% Version History: 19/04/2016 PJ Initial version
%
%
% Copyright 2016 : P R Jones
% *********************************************************************
%
% get number of elements
n = length(X);
% Set c: bias correction factor for finite sample size
if n < 10
cc = [NaN 0.743 1.851 0.954 1.351 0.993 1.198 1.005 1.131];
c = cc(n);
elseif mod(n,2)==0 % is odd
c = n/(n-.9);
else % is even
c = 1;
end
% compute median difference for each element
tmp = nan(n,1);
for i = 1:n
tmp(i) = median(abs(X(i) - X([1:i-1 i+1:end])));
end
% compute median of median differences, and apply finite sample correction
Sn = c * median(tmp);
end
2 件のコメント
Image Analyst
2016 年 4 月 19 日
I don't know what MADn is, but I see nothing in the definition of MAD that requires a symmetric distribution. In fact it's claim to fame is that it's better than linear moments like standard deviation for non-symmetrical distributions with outliers, where as stdev will be influenced by outliers.
pete
2016 年 4 月 25 日
編集済み: pete
2016 年 4 月 25 日
Thank you for your comment.
Regarding MADn: This is just MAD scaled by a constant (typically 1.4826). Apologies for not specifying.
Regarding symmetry, here is a quote from Rousseeuw & Croux's 1993 paper:
- "the MAD takes a symmetric view on dispersion, because one first estimates a central value (the median) and then attaches equal importance to positive and negative deviations from it. Actually, the MAD corresponds to finding the symmetric interval (around the median) that contains 50% of the data (or 50% of the probability), which does not seem to be a natural approach at asymmetric distributions… In fact, Huber (1981, p. 114) presented the MAD as the symmetrized version of the interquartile range. This implicit reliance on symmetry is at odds with the general theory of M-estimators, in which the symmetry assumption is not needed. Of course, there is nothing to stop us from using the MAD at highly skewed distributions, but it may be rather inefficient and artificial to do so."
If you disagree I'd be interested to hear your thoughts, but I think they put it quite well.
And yes, I agree that MAD is in general very strong, and certainly better than stdev, for the reason you state.
参考
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!