Solve as Optimization Problem in Matlab
3 ビュー (過去 30 日間)
古いコメントを表示
I want to solve this simple equation as an optimization problem in Matlab. I have tried linprog, fmincon and fminunc and all do not seem to get it done. It is trivial to solve with brute-force in a loop (as below) and with Excel's Solver, but I want to be able to use one of Matlab's optimization routines too.
Solve:
15*i + 16*j + 17*k = 121
i, j and k are integers.
With loops, the solution is trivial:
for i = 0:100
for j = 0:100
for k = 0:100
val = 15*i + 16*j + 17*k;
if val == 121
disp('here!')
i,j,k
end
end
end
end
The solution is i=7, j=1, k=0.
I want to solve as:
min 121 - 15*i - 16*j - 17*k
s.t. i,j,k are >=0 integers.
What is the appropriate formulation as a optimization problem in Matlab?
Thanks!
0 件のコメント
採用された回答
Ameer Hamza
2020 年 11 月 18 日
編集済み: Ameer Hamza
2020 年 11 月 18 日
MATLAB have genetic algorithm ga() from the global optimization toolbox to solve such problems
f = @(x) 121 - 15*x(1) - 16*x(2) - 17*x(3);
sol = ga(@(x) f(x).^2, 3, [], [], [], [], [0 0 0], [], [], 1:3);
Result
>> sol
sol =
7 1 0
Of course, the problem has an infinite number of solutions. This is one of them
8 件のコメント
Ameer Hamza
2020 年 11 月 18 日
編集済み: Ameer Hamza
2020 年 11 月 18 日
@John, I later realized my mistake of calling it a nonlinear problem. intlinprog() can also be used.
その他の回答 (3 件)
Bruno Luong
2020 年 11 月 18 日
編集済み: Bruno Luong
2020 年 11 月 18 日
c=[15 16 17];
t = 121;
A = [ c -1;
-c -1];
b = [ t;
-t];
f = [zeros(length(c),1); 1];
LB = 0*f;
x = intlinprog(f, 1:size(f), A, b, [], [], LB, []);
x = round(x);
i = x(1)
j = x(2)
k = x(3)
John D'Errico
2020 年 11 月 18 日
編集済み: John D'Errico
2020 年 11 月 18 日
In MATLAB, the solution is intlinprog. Of course, there may be multiple solutions. intlinprog does not give them, if any could exist. But there is no need for loops either, nor even to go out as far as 100.
Since we know
8*15
ans =
120
then we can limit the variables to be no larger than 8.
[x,y,z] = ndgrid(0:8,0:8,0:8);
ind = find(15*x + 16*y + 17*z == 121)
ind =
17
>> x(17)
ans =
7
>> y(17)
ans =
1
>> z(17)
ans =
0
So the only possible solution in positive integers is as found. Fast, efficient, and trivial to write. Sometimes brute force is the easiest thing. Would I have used intlinprog? Of course, as that is the obvious way to solve any problem of this class.
Had the problem been larger, perhaps to find a solution in integers to this?
137*x + 291*y + 313*z + 997*u + 1329*v + 237*w == 1 + 1e15
Now brute force will fail, because the search will push the search space out into numbers on the order of 1e13. And of course, even intlinprog might be at risk, due to the size of the right hand side, compared to the dynamic range of a double. This latter problem can now be solved more easily using number theory. How? Consider this...
(writing)
5 件のコメント
Bruno Luong
2020 年 11 月 19 日
編集済み: Bruno Luong
2020 年 11 月 19 日
I remember I wrote some code based on GCD 12 years ago, and one can find here thank to mother Google.
This code list ALL positive integer solutions of the equation.
The (almost) same code are attached for reference.
参考
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!