CNN+BILSTM Architecture
6 ビュー (過去 30 日間)
古いコメントを表示
Hello
Could someone please let me know if my implmentation of CNN+BILSTM network is correct? Am not getting good performance:
I am trying to classify 12-Lead ECG signals
inputSize = [1250 12 1];
numHiddenUnits = 10;
layers = [ ...
sequenceInputLayer(inputSize,'Name','input','normalization','none')
sequenceFoldingLayer('Name','fold')
convolution2dLayer([21 1],16,'Name','conv1','Padding','same')
maxPooling2dLayer([7 1],'Stride',7,'Name','maxpool1','Padding','same')
convolution2dLayer([17 1],32,'Name','conv2','Padding','same')
maxPooling2dLayer([6 1],'Stride',6,'Name','maxpool2','Padding','same')
convolution2dLayer([13 1],64,'Name','conv3','Padding','same')
maxPooling2dLayer([7 1],'Stride',7,'Name','maxpool3','Padding','same')
sequenceUnfoldingLayer('Name','unfold')
flattenLayer('Name','flatten')
bilstmLayer(numHiddenUnits,'OutputMode','last','Name','bilstm1')
fullyConnectedLayer(numClasses, 'Name','fc')
softmaxLayer('Name','softmax')
classificationLayer('Name','classification')];
Thank you
1 件のコメント
Asvin Kumar
2020 年 8 月 3 日
If you are referring to any paper or material, providing that as a reference would help anyone from the community validate or make suggestions if that's what you're looking for.
回答 (1 件)
参考
カテゴリ
Help Center および File Exchange で Image Data Workflows についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!