Writing my own polyfit function

4 ビュー (過去 30 日間)
SB
SB 2012 年 10 月 26 日
コメント済み: Max 2022 年 8 月 20 日
How would one write their own polyfit function using only mldivide and for loops?
I have a basic idea:
function [A,e] = MyPolyRegressor(x, y, n)
c=ones(n,1);
for i=1:n;
c(:,i)=x.^(i-1);
end
A=c\y
e=c*A-y
But it doesnt quite work.
  3 件のコメント
SB
SB 2012 年 10 月 26 日
Well, there's a dimension mismatch in line 4. Even when I switch c to c=ones(size(X)) to fix that issue, there are too many coefficients, none of which are correct.
Jan
Jan 2012 年 10 月 26 日
編集済み: Jan 2012 年 10 月 26 日
Because you didn't format your code properly (please learn how to do this...), it is not possible to find out, which one is the "line 4".
But with some guessing: "ones(n,1)" and even "ones(size(x))" create vectors, while the required Vandermonde-matrix needs the dimensions [length(x), n+1].

サインインしてコメントする。

採用された回答

Jan
Jan 2012 年 10 月 26 日
編集済み: Jan 2012 年 10 月 26 日
function p = fPolyFit(x, y, n)
% Construct Vandermonde matrix:
x = x(:);
V = ones(length(x), n + 1);
for j = n:-1:1
V(:, j) = V(:, j + 1) .* x;
end
% Solve least squares problem:
[Q, R] = qr(V, 0);
p = transpose(R \ (transpose(Q) * y(:)));
% Equivalent: (V \ y)'
  1 件のコメント
SB
SB 2012 年 10 月 26 日
編集済み: SB 2012 年 10 月 26 日
For a weighted Least Squares problem, would you do function [A, e] = WeightedLeastSquares(X, Y, w,n)
X=diag(w)*X
Y=diag(w)*Y
X = X(:);
V = ones(length(X), n + 1);
for j = n:-1:1
V(:, j) = V(:, j + 1) .* X;
end
[Q, R] = qr(V, 0);
A= (R \ (transpose(Q) * Y(:)));
e= V*A-Y;
?

サインインしてコメントする。

その他の回答 (1 件)

Vrushabh Bhangod
Vrushabh Bhangod 2018 年 5 月 19 日
編集済み: Walter Roberson 2018 年 6 月 10 日
function [p,mu,f] = plofit(x,y,n)
% x = input samples
% y = output function,n = order
m = length(x); %number of rows in the Vandermonde Matrix
V = zeros(m,n);
a = n;
for i = 1:m
v = zeros(1,n);
for j = a:-1:1
v(n+1-j) = realpow(x(i),j);
end
V(i,:) = v;
end
V(:,n+1)=ones(m,1);% adding 1 column to ones to the vandermonde matrix
%%QR method to compute the least squares solution for the coefficients,'p'
[Q,R] = qr(V,0);
p = transpose(R \ (transpose(Q) * y'));
f = polyval(p,x);
%%to find mean
mean = sum(x)/length(x);
sq = 0;
for i =1:length(x)
sq = sq + (x(i)-mean)^2;
end
sd = (sq/length(x))^0.5;
mu = [mean;sd];
end
  1 件のコメント
Max
Max 2022 年 8 月 20 日
Works perfect, Thanks!

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeLinear Algebra についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by