Embedding data points problem

1 回表示 (過去 30 日間)
Desiree
Desiree 2020 年 4 月 6 日
編集済み: Shlok 2024 年 12 月 5 日
Hello. I wrote this following which I have theta data column points (1024 in my case)and finds the eigenvectors of the Laplace-Beltrami operator using density invariant normalization.
theta=0:2*pi/1023:2*pi;
t=-1.5:3/511:1.5;
P=my_data(theta,t);
B=(1/size(P,2))*sum(P,2);
U=zeros(size(P));
for l=1:size(P,2)
U(:,l)=B;
end
X=P-U;
epsilon=0.01
W=zeros(size(P,2),size(P,2));
T=zeros(size(P,2),size(P,2));
for i=1:size(P,2)
for j=1:size(P,2)
W(i,j)=exp(-norm(X(:,i)-P(:,j))/(sqrt(2*epsilon)));
end
end
a=(sum(W,2))';
D=zeros(size(W,1),size(W,2));
for k=1:size(W,2)
D(k,k)=a(k);
end
T=inv(D)*W*inv(D);
b=(sum(T,2))';
D2=zeros(size(W,1),size(W,2));
for m=1:size(W,2)
D2(m,m)=b(m);
end
Anorm=inv(D2)*T;
G=(D2^(-0.5))*T*(D2^(-0.5));
[V,gamma]=eig(G);
Now I need to make embedding of each column of X onto the first 3 and 4 non trivial eigenvectors excluding V(:,1) but I don’t know how to do it. Help is greatly appreciated!

回答 (1 件)

Shlok
Shlok 2024 年 12 月 5 日
編集済み: Shlok 2024 年 12 月 5 日
Hi Desiree,
To embed each column of Xonto the eigenvectors, the approach is to extract out the desired eigenvectors and perform matrix multiplication with them. To achieve this, follow the following steps:
  • Exclude the first eigenvector “V(:,1)using indexing, and then extract next 3 and 4 eigenvectors.
V_non_trivial = V(:, 2:end);
V_first_3 = V_non_trivial(:, 1:3);
V_first_4 = V_non_trivial(:, 1:4);
  • Now, project the data by multiplying “X” with the transpose of selected eigenvectors to obtain the embedding.
embedding_3 = V_first_3' * X;
embedding_4 = V_first_4' * X;
This is how we can embed the data points (columns of X) into a lower-dimensional space using the first 3 or 4 non-trivial eigenvectors.
To know more about indexing in MATLAB, refer to the following documentation link:

カテゴリ

Help Center および File ExchangeSpecifying Target for Graphics Output についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by