How do i graph a certain amount of elements in a taylor series.

3 ビュー (過去 30 日間)
Nathen Eberhardt
Nathen Eberhardt 2020 年 4 月 5 日
コメント済み: Nathen Eberhardt 2020 年 4 月 5 日
Here is my question: For all of these on the same figure , plot:
• The Taylor Series expansion using the first 2 terms as a DASHED red line.
• The Taylor Series expansion using the first 4 terms as a DOTTED cyan line.
• The Taylor Series expansion using the first 6 terms as a DASHED blue line.
How do i do this?
This graph has the following limits:
xlim([-4*pi,4*pi])
ylim([-2,2])
  5 件のコメント
per isakson
per isakson 2020 年 4 月 5 日
See what Wiki says: Taylor series
Nathen Eberhardt
Nathen Eberhardt 2020 年 4 月 5 日
Sorry, Im not all too familiar with the taylor series.
This is how my teacher described it for the problem:
The Taylor Series approximation of the sine function is T = x − x^3/3! + x^5/5! − x^7/7! + x^9/9! − x^11/11! + ...

サインインしてコメントする。

採用された回答

Aaron Pedersen
Aaron Pedersen 2020 年 4 月 5 日
編集済み: Aaron Pedersen 2020 年 4 月 5 日
As this is homework you may have to write your own taylor series expansion code but:
%from https://www.mathworks.com/help/symbolic/sym.taylor.html
%TS
syms x %use x as your independent variable
f = sin(x); %define f(x)
%use built in taylor function,define independent variable, define n order expansion
T2 = taylor(f, x, 'Order', 2);
T4 = taylor(f, x, 'Order', 4);
T6 = taylor(f, x, 'Order', 6);
%plotting
figure(1);
hold on;grid on;
%labeling the bottom
xticks([-4*pi,-3*pi,-2*pi,-pi,0,pi,2*pi,3*pi,4*pi])
xticklabels({'-4\pi','-3\pi','-2\pi','-\pi','0','\pi','2\pi','3\pi','4\pi'})
%setting limits
xlim([-4*pi,4*pi]);
ylim([-2,2]);
%assing plots to variable names for easy legend creation
%use fplot so we dont need an xaxis variable
p1 = fplot(T2,"r--");l1 = "two terms"; %red dashed
p2 = fplot(T4,"c:");l2 = "four terms"; %cyan dotted
p3 = fplot(T6,"b--");l3 = "six terms"; %blue dashed
legend([p1,p2,p3],[l1,l2,l3],'location','northwest');
hold off
[T2,T4,T6] being your taylor series representations.
"help plot" in the command window will give you more information on plotting styles.
hope this helped.
  2 件のコメント
Nathen Eberhardt
Nathen Eberhardt 2020 年 4 月 5 日
Thank you this will!!
The Taylor Series approximation of the sine function is T = x − x^3/3! + x^5/5! − x^7/7! + x^9/9! − x^11/11! + ...
So how exactly would I code to do the first two terms or four terms of this function?
Aaron Pedersen
Aaron Pedersen 2020 年 4 月 5 日
編集済み: Aaron Pedersen 2020 年 4 月 5 日
I have edited my answer to show you how I would do it, however depending on your course they may not allow the use of the internal matlab functions. I recommend looking at other psudocode, from a quick google (this looks useful) there are a few examples online of different automated methods of doing this. David Hill has answered with another method which works but is less automated. If I had to wirte my own function I would look at the patterns in the Taylor Series aproximation of your function and use a for loop to construct the values based off of its sigma notation defining x as a linspace as David did.

サインインしてコメントする。

その他の回答 (1 件)

David Hill
David Hill 2020 年 4 月 5 日
x=linspace(-pi,pi,100)';%Taylor Series is only good from -pi to pi
t=[x,-x.^3/factorial(3),x.^5/factorial(5),-x.^7/factorial(7),x.^9/factorial(9),x.^11/factorial(11)];
plot(x,sum(t(:,1:2),2),x,sum(t(:,1:4),2),x,sum(t,2));

カテゴリ

Help Center および File ExchangeNumerical Integration and Differentiation についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by