Info

この質問は閉じられています。 編集または回答するには再度開いてください。

least square approcah for method of moments fourth order non linear differential equations

1 回表示 (過去 30 日間)
kingcruises
kingcruises 2020 年 3 月 19 日
閉鎖済み: MATLAB Answer Bot 2021 年 8 月 20 日
hi
plz help
How can we apply least square approach for the convergence of solution for this given code.
%%MoM Solution
syms f(x)
%MoM Solution
syms k(x)
k = 1*x^2+1*x+1.05;
%L=diff(y,x,2)
%weight n is chosen to satisfy the boundary conditions stated above
N = 1;
for n = 1:N
t(n) = x - x^(n+1);
end
%For Galerkin's Mom the weighting functions are the same as the basis
%functions
M = N; %M=N
%for j=1:N
% weight(j)=basis(j);
for m = 1:M
w(m) = x - x^(m+1);
end
%Create Matrix Z
for i = 1:M
for j = 1:N
%-((9*(x.^2)+6)*f(4))-(((8*x)+3)*f(3))-(f(1)*f(2))-f(1)+(20*(x^2))+(13*x)+36];
temp = w(i).*(-(9*(x.^2)+6)*(diff(t(j),x,4))-((8*x+3)*(diff(t(j),x,3))- t(j)*diff(t(j),x,2) -1*(diff(t(j),x,1))));
% + w(i-1).*((a*x+b)*(diff(t(j),x,1)))+w(i-2).*(diff(t(j),x,0) +(a*x+b)*(diff(t(j),x,1))+(diff(t(j),x,0)))];
Z(i,j) = int(temp, 0, 1);
end
end
%Create' Vector V
for i = 1:N
temp = k*w(i);
V(i) = int(temp, 0, 1);
end
I = inv(Z)*V';
f(x) = 0;
for n = 1:N
f(x) = f(x) + I(n) * t(n);
end
ezplot(f(x), [0 10])
axis([0 10 0 140]);
title('MOM for N=1')
%legend('N=3')

回答 (0 件)

この質問は閉じられています。

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by