C.T. signals convolution in Matlab
1 回表示 (過去 30 日間)
古いコメントを表示
Hi, I have 2 continues time signals (exp decay & step), is it possible to convolute them in MATLAB?
I am working with symbolic variables ‘s’ and ‘t’ since I have obtained a transfer function H(s) analyticlay then converted it to h(t) using ilapalce() function, hence now I need to obtain y(t) where y(t) = h(t)*x(t). x(t) = u(t) a step input and h(t) = exp(-2 t) 4 - 4 exp(-t)

Thanks!
JS
0 件のコメント
採用された回答
Star Strider
2020 年 1 月 15 日
One approach:
syms h(t) x(t) s t
Fcn1 = h(t) == exp(-2*t)*4 - 4*exp(-t);
Fcn2 = x(t) == heaviside(t);
convlap = laplace(Fcn1, t, s) * laplace(Fcn2, t, s);
Y(s) = simplify(rhs(convlap), 'Steps',250)
y(t) = ilaplace(Y, s, t)
Producing:
y(t) =
4*exp(-t) - 2*exp(-2*t) - 2
2 件のコメント
Star Strider
2020 年 1 月 15 日
Yes.
I did the convolution in the complex s-domain because (1) that is the only way it is possible to do it, and (2) I got the impression that was the process you described as desiring.
This:
syms h(t) x(t) s t T tau
h(t) = exp(-2*t)*4 - 4*exp(-t);
x(t) == heaviside(t);
y(t) = simplify(int(h(t)*x(t-tau), tau, -T, T), 'Steps',250)
produces:
y(t) =
-4*exp(-2*t)*(exp(t) - 1)*int(x(t - tau), tau, -T, T)
that appears to be the best result available. There is no specific convolution function in the Symbolic Math Toolbox. (I used symmetric integration limits because similar terms cancel each other, considerably simplifying the expression.)
Using asymmetric limits:
y(t) = simplify(int(h(t)*x(t-tau), tau, 0, T), 'Steps',250)
produces:
y(t) =
-4*exp(-2*t)*int(x(t - tau), tau, 0, T)*(exp(t) - 1)
その他の回答 (1 件)
参考
カテゴリ
Help Center および File Exchange で Symbolic Math Toolbox についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!