solving a coupled pde by reducing it into coupled ode

4 ビュー (過去 30 日間)
SDO
SDO 2019 年 11 月 16 日
回答済み: SDO 2019 年 11 月 16 日
Hi all
I am solving a highly nonlinear PDE y_t=[R(y,t)]_x by applying [R_(i+1/2) - R_(i-1/2)] / dx , reducing it to an ODE, and solving it with ode23tb, which works nicely.
However, when I try to do the same for a coupled system, y1=[R(y1,y2,t)]_x , y2=[Q(y1,y2,t)]_x it fails.
The sample code for the single equation is below, solving for periodic BC: ( y_t=[y^2y_xxx]_x )
Thanks in advance.
function sample
global N L
N = 51;L = 2*pi*wn;x = linspace(0,L,N);
st=10;ft=100;t = 0:st:ft;fin=ft/st;
y0 = 1-0.1*cos(x);
% sparsity matrix for the Jacobian
e = ones(N,1);S = spdiags([e e e e e], -2:2,N,N);
options = odeset('RelTol',1e-4,'AbsTol',1e-20, 'JPattern',S,'BDF','on');
[t,h] = ode23tb(@r,t,y0,options);
plot(x,h(fin,:),x,h(1,:),'--','LineWidth',2)
axis([0 L 0 2])
function yt = r(t,y)
global N L
yt0=size(N);
dx = L/(N-1);a2=-1/(2*dx^4);
r1=y.^2;
y(N+1) = y(2);y(N+2) = y(3);r1(N+1) = r1(2);
for i = 3:N
yt0(i)=a2*(r1(i+1) + r1(i))*(y(i+2)-3*y(i+1)+3*y(i)-y(i-1))-...
a2*(r1(i) + r1(i-1))*(y(i+1)-3*y(i)+3*y(i-1)-y(i-2));
end
hm=y(N-1);hmm=y(N-2);r1m=r1(N-1);
i=1;
yt0(i) = (a2*(r1(i+1) + r1(i))*(y(i+2)-3*y(i+1)+3*y(i)-hm)-...
a2*(r1(i) + r1m)*(y(i+1)-3*y(i)+3*hm-hmm));
i=2;
yt0(i) = (a2*(r1(i+1) + r1(i))*(y(i+2)-3*y(i+1)+3*y(i)-y(i-1))-...
a2*(r1(i) + r1(i-1))*(y(i+1)-3*y(i)+3*y(i-1)-hm));
yt = yt0';
  1 件のコメント
SDO
SDO 2019 年 11 月 16 日
thaks for the edit @Image Analyst.
The following link is the answer, for the ones who are interested:

サインインしてコメントする。

採用された回答

SDO
SDO 2019 年 11 月 16 日

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeBoundary Conditions についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by