I need to solve an equation involving squares and cubes.

4 ビュー (過去 30 日間)
Thomas McCormack
Thomas McCormack 2019 年 11 月 12 日
コメント済み: Dimitris Kalogiros 2019 年 11 月 13 日
I need to sole this equation for L, and I have a set of values for d and p.
p = -2(d/L)^3 + 3(d/L)^2
Im wondering how to put this into Matlab. Any help would be apprecitated.
  1 件のコメント
James Tursa
James Tursa 2019 年 11 月 12 日
Multiply both sides by L^3 and then you have a polynomial in L to work with.

サインインしてコメントする。

採用された回答

Dimitris Kalogiros
Dimitris Kalogiros 2019 年 11 月 12 日
編集済み: Dimitris Kalogiros 2019 年 11 月 13 日
It is a 3rd order equation, it has only an analytical solution.
You can use the following code:
clc; clearvars;
syms p d L
p=1;
d=3;
eq= p == -2*(d/L)^3 + 3*(d/L)^2
% analytical solution
solve(eq,L)
%numerical solution
vpasolve(eq)
And in case you want to run this for a set of values , you can do the following:
clc; clearvars;
syms p d L
% values for p, d
pValues=50:10:90;
dValues=300:50:600;
% an empty buffer for the solutions, combined with p,d
SolBuffer=cell(length(pValues)*length(dValues),3);
% solution counter
k=0;
for n=1:length(pValues)
for m=1:length(dValues)
k=k+1;
p=pValues(n);
SolBuffer{k,1}=p;
d=dValues(m);
SolBuffer{k,2}=d;
eq= p == -2*(d/L)^3 + 3*(d/L)^2;
% analytical solution
solve(eq, L);
%numerical solution
SolBuffer{k,3}=vpasolve(eq).';
end
end
% An example: the third solution
disp('data p and d :')
disp(SolBuffer{3,1})
disp(SolBuffer{3,2})
disp('solutions:')
disp(SolBuffer{3,3})
  5 件のコメント
Thomas McCormack
Thomas McCormack 2019 年 11 月 13 日
Thats very kind of you, thanks a lot!! One final thing, is there a way to print all the answers in a matrix?
Dimitris Kalogiros
Dimitris Kalogiros 2019 年 11 月 13 日
clc; clearvars;
syms p d L
% values for p, d
pValues=50:10:90;
dValues=300:50:600;
% an empty buffer for the solutions, combined with p,d
SolBuffer=nan(length(pValues)*length(dValues),3);
% solution counter
k=0;
for n=1:length(pValues)
for m=1:length(dValues)
k=k+1;
p=pValues(n);
d=dValues(m);
eq= p == -2*(d/L)^3 + 3*(d/L)^2;
% analytical solution
solve(eq, L);
%numerical solution
SolBuffer(k,1:3)=vpasolve(eq).';
end
end
% display solutions
SolBuffer

サインインしてコメントする。

その他の回答 (1 件)

John D'Errico
John D'Errico 2019 年 11 月 12 日
You have many values for both d and p? Do you want to solve it for all combinations of d and p?
Anyway, first, I would recognize that d and L are alwways combined in the same form, thus, we have d/L always. So first, substitute
X = d/L
Of course, once we know the value of X, we can always recover L, as:
L = d/X
Now your problem reduces to
p = -2*X^3 + 3*X^2
You could use a loop over all values of p, getting three roots for each value of p. Before we do even that however, do a plot.
ALWAYS PLOT EVERYTHING.
fun = @(X) -2*X.^3 + 3*X.^2;
fplot(fun,[-1,2])
yline(0);
yline(1);
See that I used the .^ operator there to avoid problems.
untitled.jpg
Because this is a cubic polynomial in X, you can think of your problem as having 3 real roots for X, whenever p is betweeen 0 and 1. For p larger than 1 or smaller than 0, the problem will have one real root and two complex roots.
For example,
polycoef = @(p) [-2 3 0 -p];
roots(polycoef(0))
ans =
0
0
1.5
roots(polycoef(-.00001))
ans =
1.5 + 0i
-1.1111e-06 + 0.0018257i
-1.1111e-06 - 0.0018257i
So if p is just slightly less than zero as I predicted, we see a real root, but then always two complex conjugate complex roots. The same thing happens at p==1, where 3 real roots turn into a real and two complex roots as we go above p=1.
For p between 0 and 1 however, three real roots for X.
roots(polycoef(0.5))
ans =
1.366
0.5
-0.36603
Again, if you then know the value of d, we can easily recover the value of L, as
L = d./X

カテゴリ

Help Center および File ExchangeSymbolic Math Toolbox についてさらに検索

製品

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by