Classification using test and train datasets.

2 ビュー (過去 30 日間)
Silpa K
Silpa K 2019 年 11 月 7 日
コメント済み: Silpa K 2019 年 11 月 8 日
For classifcation using decision tree and finding the accuracy of the classification I used the code below, but I am getting error messages. How can I find the classifcation and accuracy of the classification? Please help me.
trainData = xlsread('arrtrain.xlsx');
testData = xlsread('arrtest.xlsx');
tr = fitctree(trainData(:,2:end),trainData(:,1));
predictLabels = predict(tr,testData(:,2:end));
trueLabels = testData(:,1);
testAccuracy = sum(predictLabels == trueLabels)/length(trueLabels)*100;
The datasets are attached here.
  1 件のコメント
Silpa K
Silpa K 2019 年 11 月 8 日
clc
clear
b=zeros(36,1);
ts = xlsread('ArrowHead_TRAIN.xlsx');
l=length(ts);
for i = 1:36
p=ts(i,:);
fa = movstd(p,20,1);
secarray=movstd(fa,20,1);
k=maxk(secarray,10);
mpt=find(p);
mp=p(mpt(round(numel(mpt)/2)));
G=min(abs(mp-k));
[~,ii] = min(abs(p(:) - k(:)'));
out = p(unique(ii));
for i = 1 : size(ts,1)
b = 30;
p = ts(i,:);
n = numel(p);
Z = mat2cell(p, 1, diff([0:b:n-1,n]));
end
A = [];
for ii = 1:length(Z)
if any(ismember(Z{ii},out))
if (k-mp<=G+l/2)
A{end+1} = Z{ii};
aa = ii;
end
end
end
z=Z{ii};
idx=p(1:1);
q=[idx z];
data = q;
cellReference = sprintf('A%d', i);
xlswrite('tra.xlsx', data, 1, cellReference);
end
I used the above code for getting the datasets.How can I write all the needed rows in excel.

サインインしてコメントする。

回答 (1 件)

Image Analyst
Image Analyst 2019 年 11 月 7 日
You need to give it data.
Your workbooks are completely empty except for a single number in one cell way down at row 175.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by