- For ode45 you give numerical functions, not symbolic ones
- There were some variables that were used in the function but initialized after the loop
- If you have time dependent variables, you ideally should define them inside the function
- Your variable order in the function was inverted
- You didn't declared v0 anywhere
Error. I want to plot this ode45 pressure versus time
3 ビュー (過去 30 日間)
古いコメントを表示
Ous Chkiri
2019 年 11 月 3 日
コメント済み: Ous Chkiri
2019 年 11 月 3 日
R=8.314/32;
T0=2930;
a=(12)/((2.027*10^6)^0.45);
rhoP=1920;
Astar=pi*0.25^2;
k=1.35;
n=0.45;
P0=101325;
syms P(t)
for t = [0,0.1]
dP=@(P,t)(Ab*a*P^n*(rhoP-rhoO)-P*Astar*sqrt(k/(R*T0))*(2/(k+1))^((k+1)/(2*(k-1))))*R*T0/v0;
[P,t]=ode45(dP, [0,0,1], P0);
end
if t==0 %at beginning of the integration set initial values for the persistent variables
rp=0.35; %initial port radius
t1=0; %initial time step
end
Ab=2*pi*rp*8;%burn area
rhoO=P/(R*T0); %gas density
rp=min(rp+((a*P^n)*10^-3)*(t-t1),0.7);
figure(2)
plot(t,y)
xlabel("Time (s)")
ylabel("Chamber Pressure (Pa)")
title("Chamber Pressure vs Time (Start-Up)")
0 件のコメント
採用された回答
Thiago Henrique Gomes Lobato
2019 年 11 月 3 日
編集済み: Thiago Henrique Gomes Lobato
2019 年 11 月 3 日
There were some errors in your code:
I choosed a random value for v0 and fix the other issues of your code, you just have to make sure that the considerations you made for your function and variables are right to fully trust the results.
R=8.314/32;
T0=2930;
a=(12)/((2.027*10^6)^0.45);
rhoP=1920;
Astar=pi*0.25^2;
k=1.35;
n=0.45;
P0=101325;
P = P0;
%syms P(t)
%at beginning of the integration set initial values for the persistent variables
rp=0.35; %initial port radius
t1=0; %initial time step
rhoO=P/(R*T0); %gas density
rp=min(rp+((a*P^n)*10^-3)*(t1-t1),0.7);
Ab=2*pi*rp*8;%burn area
v0 = 0.1;
dP=@(t,P)Fun(t,P,R,T0,rp,a,n,t1,Ab,rhoP,Astar,k,v0);%@(t,P)(Ab.*a.*P.^n.*(rhoP-rhoO)-P.*Astar.*sqrt(k/(R.*T0)).*(2/(k+1)).^((k+1)/(2.*(k-1)))).*R.*T0./v0;
[t,P]=ode45(dP, [0,0.1], P);
y = P;
figure(2)
plot(t,y)
xlabel("Time (s)")
ylabel("Chamber Pressure (Pa)")
title("Chamber Pressure vs Time (Start-Up)")
function dP = Fun(t,P,R,T0,rp,a,n,t1,Ab,rhoP,Astar,k,v0)
rhoO=P/(R*T0); %gas density
rp=min(rp+((a*P^n)*10^-3)*(t-t1),0.7);
Ab=2*pi*rp*8;%burn area
dP = (Ab.*a.*P.^n.*(rhoP-rhoO)-P.*Astar.*sqrt(k/(R.*T0)).*(2/(k+1)).^((k+1)/(2.*(k-1)))).*R.*T0./v0;
end
0 件のコメント
その他の回答 (1 件)
Ous Chkiri
2019 年 11 月 3 日
2 件のコメント
Thiago Henrique Gomes Lobato
2019 年 11 月 3 日
If you have conditions that make a discontinuity you will have to perform the integration in a piece-wise matter and add the conditions in your integration function ("Fun" in the example I gave you). This answer and comments shows an example about how you could do it and also possible pitfalls https://de.mathworks.com/matlabcentral/answers/487643-adding-a-piecewise-time-dependent-term-in-system-of-differential-equation#answer_398394?s_tid=prof_contriblnk
参考
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!