How to get a constant multiplier of any matrix using same matrix ???
1 回表示 (過去 30 日間)
古いコメントを表示
Let A be the m x n matrix.
I need a matrix such that B = k.A or det(B) = k.det(A)
where k is defined as 1 < k < infinite . It can be both integer and non-integer.
15 件のコメント
David Goodmanson
2019 年 5 月 11 日
per Walter's query, some matrices that are proportional to their inverse.
a) all 2x2 traceless matrices with nonzero determinant
b) rotation matrices by 180 degrees about an arbitrary axis
c) in the following example, to avoid numerical innacuracy (which turned out to be very small anyway) in taking the inverse,
% M*M = k*I --> M = k*inv(M) (assuming inverse exists)
M = [263 106 54 -196 -106
368 -87 12 -132 -112
286 -86 5 -254 86
274 118 -30 -267 -118
286 -86 204 -254 -113]
M*M
ans = 39601 0 0 0 0
0 39601 0 0 0
0 0 39601 0 0
0 0 0 39601 0
0 0 0 0 39601
.
回答 (1 件)
Walter Roberson
2019 年 5 月 11 日
function B = generate_B(A)
maxval = realmax ./ max(abs(A(:)));
while true
k = typecast(randi([0 255], 1, 8, 'uint8'), 'double');
if isfinite(k) && abs(k) <= maxval; break; end
end
B = k * A;
end
0 件のコメント
参考
カテゴリ
Help Center および File Exchange で Calculus についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!