FFT of Downsampled Signal
11 ビュー (過去 30 日間)
古いコメントを表示
I have an aperoidic signal that is being sampled at a very high frequency, 3.125 MHz. The signal is sampled for 8 minutes, leaving me with a very large dataset to process (1.3E9 samples). Moreover, I am confident that the data is being oversampled by a large factor so I believe that I can downsample it by a factor of ten. I am chosing to downsample primarily because of computational limits.
Would I best use downsample() or decimate()?
And the real question: How would downsampling/decimating the data by an order of 10 affect the FFT? I would like to have a meaningful frequency axis in the power-spectrum-density plot. Would I just treat my sample frequency as fs/10, 312.5 KHz?
Thanks for any guidance.
0 件のコメント
採用された回答
Greg Dionne
2019 年 4 月 30 日
Hi Adam,
If you have significant noise on the signal, then decimate(x,10) or resample(x,1,10) would be preferable. Your resulting sample rate is as you have indicated (312.5 kHz).
I would take a spectrogram on the resulting signal to see how the frequency content changes over time.
Hope this helps!
-Greg
0 件のコメント
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Multirate Signal Processing についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!