# I have five data points (A, B, C, D, E) in a two dimensional plane. Based on the euclidean distance between these points how can I group them?

1 回表示 (過去 30 日間)
Shaik Ahmad 2019 年 3 月 22 日
コメント済み: Shaik Ahmad 2019 年 3 月 22 日
I have five data points (A, B, C, D, E) in a two dimensional plane where three points (A, B, D) are close to each other and remaining two (C, E) are far from the group. If I calculate the distances between these points the results are
dist(A, B) = 0.3, dist(A, C) = 1.3, dist(A, D) = 0.15, dist(A, E) = 1.0, dist(B, C) = 0.9, dist(B, D) =0.2, dist(B, E) = 1.1, dist(C, D)=1.6, dist(C, E) = 1.0, dist(D, E) = 1.5.
Now if I choose a distance threshold as 0.6, I need to get a result as:
A, B, D (Closer to each other)
C (far from other points)
E (far from other points)

サインインしてコメントする。

### 回答 (1 件)

KSSV 2019 年 3 月 22 日
##### 3 件のコメント1 件の古いコメントを表示1 件の古いコメントを非表示
KSSV 2019 年 3 月 22 日

Yes...for kmeans you need to provide the number of clusters. Why don't you give your points. Let me give a trry.
Shaik Ahmad 2019 年 3 月 22 日
I found a solution for that.
I need to apply Hierarchical Clustering to get that output. Here There are functions called pdist and linkage which do the work.
Thank you for yout support @KSSV

サインインしてコメントする。

### カテゴリ

Help Center および File ExchangeCluster Analysis and Anomaly Detection についてさらに検索

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by