How can numerically compute eigenvalues of an ordinary differential equation in MATLAB?
39 ビュー (過去 30 日間)
古いコメントを表示
Lemuel Carlos Ramos Arzola
2019 年 2 月 9 日
コメント済み: Lemuel Carlos Ramos Arzola
2019 年 2 月 15 日
Hello,
I need to compute (numerically) the eigenvalues (L) of this singular ODE,


Is it possible to use the Matlab function bvp4c? Or another?
Best regards,
Lemuel
2 件のコメント
Torsten
2019 年 2 月 11 日
https://math.stackexchange.com/questions/2507694/what-numerical-techniques-are-used-to-find-eigenfunctions-and-eigenvalues-of-a-d
採用された回答
Lemuel Carlos Ramos Arzola
2019 年 2 月 13 日
4 件のコメント
Torsten
2019 年 2 月 14 日
But as far as I see, you won't get an eigenvalue for an arbitrary choice of the third boundary condition.
E.g. if you have the ODE
y''+L*y = 0
y(0)=y(2*pi)=0,
the eigenvalues and eigenfunctions are L_n = (n/2)^2 and y_n(x) = sin(n*x/2) (n=1,2,3,...).
So if you choose y'(0)=1 as third boundary condition at x=0, e.g., every function y(x)=a*sin(sqrt(L)*x) with a*sqrt(L)=1 is a solution of the ODE, not only those for which a=2/n and L=(n/2)^2 (n=1,2,3.,,,).
その他の回答 (2 件)
Bjorn Gustavsson
2019 年 2 月 11 日
Have a look at what you can do with chebfun. It seem to cover eigenvalue/eigenfunctions of ODEs in some detail:
HTH
Torsten
2019 年 2 月 11 日
So you are left with the problem to find "a" such that
L_(0.25*(sqrt(a)-2)) (x) = 0 for x=sqrt(a).
2 件のコメント
参考
カテゴリ
Help Center および File Exchange で Ordinary Differential Equations についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!