2nd order ode using euler method

12 ビュー (過去 30 日間)
MD RESHAD UL HOQUE
MD RESHAD UL HOQUE 2018 年 11 月 25 日
編集済み: Torsten 2018 年 11 月 27 日
The following second-order ODE is considered to be stiff: d2y/dx2=−1001dy/dx−1000?
initial conditions are: y(0)=1 and ?′(0)=0
What to solve the ODE using Euler’s method with implicit function.
I implemetd the above question using matlab. But implemented code gives this error.
euler.png
I attached the code. Can anyone suggest me about the bug of this code?.
function dy = dpnon(t, y)
dy = [y(2);-1000*y(1)-1001*y(2)];
end
function [x,y]=euler_explicit(f,xinit,yinit,xfinal,h)
n=(xfinal-xinit)/h;
% Initialization of x and y as column vectors
x=[xinit zeros(1,n)]; y=[yinit zeros(1,n)];
% Calculation of x and y
for i=1:n
x(i+1)=x(i)+h;
y(i+1)=y(i)+h*f(x(i),y(i));
end
end
xinit=0;
xfinal=3;
yinit=0;
h=.5;
euler_explicit(@dpnon,xinit,yinit,xfinal,h)

採用された回答

Torsten
Torsten 2018 年 11 月 26 日
編集済み: Torsten 2018 年 11 月 27 日
function main
xinit = 0;
xfinal = 3;
yinit = [1 0];
h = .5;
[x,y] = euler_explicit(@dpnon,xinit,yinit,xfinal,h)
plot(x,y(:,1))
end
function [x,y]=euler_explicit(f,xinit,yinit,xfinal,h)
n = (xfinal-xinit)/h;
% Initialization of x and y as column vectors
x = [xinit;zeros(n,1)];
y = [yinit;zeros(n,2)];
% Calculation of x and y
for i = 1:n
x(i+1) = x(i) + h;
y(i+1,:) = y(i,:) + h*f(x(i),y(i,:));
end
end
function dy = dpnon(t, y)
dy = [y(2),-1000*y(1)-1001*y(2)];
end

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeOrdinary Differential Equations についてさらに検索

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by