Info

この質問は閉じられています。 編集または回答するには再度開いてください。

How can two neural networks be compared for regression based on training and testing results ?

1 回表示 (過去 30 日間)
Kangujam
Kangujam 2018 年 8 月 23 日
閉鎖済み: MATLAB Answer Bot 2021 年 8 月 20 日
How can two neural networks be compared for regression based on training and testing results ?
  2 件のコメント
Greg Heath
Greg Heath 2018 年 8 月 23 日
編集済み: Greg Heath 2018 年 8 月 23 日
Since it is obvious that 2 nets can be compared by plotting their reponses, it is unclear what your problem is.
Please elucidate.
Greg
Kangujam
Kangujam 2018 年 8 月 24 日
編集済み: Kangujam 2018 年 8 月 24 日
@Greg Heath actually after implementation of neural network for regression, training and testing MSE results will be obtained. So from those neural networks, which mse has to be chosen for comparison? Will it be training mse or testing mse?

回答 (2 件)

BERGHOUT Tarek
BERGHOUT Tarek 2019 年 2 月 3 日
for regression the lower error the greater accuracy is the network gets . you can also use a T test for you output analysis to determine which net is better

Greg Heath
Greg Heath 2019 年 2 月 4 日
The MATLAB default is training/validation/testing fractions of 0.7/0.15/0.15
Typically, the performance depends on a
1. A reasonable choice for number of hidden layers and nodes
2. A successful choice of RANDOM division into train/val/test subsets
3. A successful group of RANDOM initial weights
MY APPROACH:
1. A single hidden layer
2. Loop over 0 to Hmax trial values for numHidden
3. 10 random initial weight trials for each test value of H
4. MSEgoal = 0.01*mean(var(target',1))
NETWORK GRADING
grade = alpha*MSEtst + beta*MSEval
If N is sufficiently large alpha = 1, beta = 0

この質問は閉じられています。

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by