GA (genetic algorithm) moves away from better values

2 ビュー (過去 30 日間)
Hans
Hans 2012 年 6 月 14 日
I am running a ga-optimization and I often get results like this one:
Best Mean Stall
Generation f-count f(x) f(x) Generations
1 932 -9.372e+005 1.231e+010 0
2 1398 -1.514e+005 7.911e+009 1
3 1864 7.705e+004 -3.975e+017 2
4 2330 -2.988e+004 -1.812e+015 0
5 2796 -2.988e+004 -1.135e+007 1
6 3262 -2.988e+004 -9.866e+007 2
7 3728 -563.1 -3.495e+007 3
8 4194 -563.1 -8.067e+006 4
9 4660 -563.1 -2.998e+007 5
10 5126 -563.1 -7.216e+006 6
11 5592 -563.1 -7.953e+006 7
12 6058 -288.2 -3.525e+006 8
13 6524 51.32 -3.823e+005 9
14 6990 -40.55 -1.176e+005 0
15 7456 19.38 2.5e+004 1
16 7922 14.31 9165 0
17 8388 14.31 8330 1
18 8854 6.788 6995 0
19 9320 6.788 8568 1
20 9786 5.907 8970 0
21 10252 1.453 1.218e+004 0
i wonder how (with an elite count set to 40 out of a population of 466) the algorithm moves to worse values first. How can this be improved? Thanks a lot for your answers!
  4 件のコメント
Hans
Hans 2012 年 6 月 14 日
Could it be due to complex results (there are some logarithms in the function to be minimized)? Let's say MATLAB displays some result a, then there's actually a result a+ib with a lower absolute value or lower [minus absolue value] than one of the older results. Could that be it?
Hans
Hans 2012 年 6 月 15 日
I am trying again now with constraints preventing complex results. However, the algorithm is still moving away(only two generations so far becasue it needs 26500 function evaluations per generation) but still..

サインインしてコメントする。

回答 (1 件)

Richard Crozier
Richard Crozier 2012 年 6 月 14 日
But only the mean gets worse, the best improves with every generation, and this is all that matters surely?
Random combinations with nonlinear responses can easily throw up huge values which distort the mean, while not affecting the overall progress of the search.
For example, imagine the following with a population of 7:
Gen 1 scores: 100, 100, 150, 140, 111, 100, 119
best score: 100
mean score: 117.14
Gen2 scores: 87, 66, 167, 1000000000000, 55, 98, 206
best score: 55
mean score: 1.4286 x 10^11
The really bad individual would have a very low chance of passing its genes to the next generation so it's ok.
  6 件のコメント
Richard Crozier
Richard Crozier 2012 年 6 月 15 日
It still looks like it's moving towards zero? Another way to test your theory would be to modiy your function to return a poor score for complex results (e.g. 10000 * real(ll) if ll is complex or something like this) instead of the actual value of the function.
What GA are you using, is it the Matlab GA toolbox (which I haven't used) or some other one? You could try the problem out in the GA Toolbox from the University of Sheffield available here: http://www.shef.ac.uk/acse/research/ecrg/gat to see if you get the same behaviour.
Richard Crozier
Richard Crozier 2012 年 6 月 15 日
or actually abs(10000 * real(ll) ) would be better.

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeGenetic Algorithm についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by