compute determinant using Cholesky decomposition

21 ビュー (過去 30 日間)
Gaurav Gupta
Gaurav Gupta 2012 年 6 月 13 日
コメント済み: youtha 2019 年 1 月 5 日
I need to compute determinant of a positive definite, hermitian matrix in fastest way for my code. So the best way is to compute by cholesky decomposition, but on writing code for it there is no improvement over MATLAB built-in function "det" which is based on LU decomposition (more complex than cholskey). Can anyone help, can we modify matlab buit-in function "chol" to determine determinant from it directly.
  2 件のコメント
Gaurav Gupta
Gaurav Gupta 2012 年 6 月 14 日
Can MATLAB people help me with this
youtha
youtha 2019 年 1 月 5 日
Try using
:)
L=chol(A)
p=1;
for i=1:n
p=p*L(i,i)^2
end

サインインしてコメントする。

回答 (2 件)

Walter Roberson
Walter Roberson 2012 年 6 月 13 日
Keep in mind that for sufficiently large matrices, MATLAB is going to invoke multi-threaded library code that has been heavily optimized for the target architectures. (It doesn't do that for smaller matrices because there is notable overhead in re-arranging the arrays into the form required by those libraries.)

Teja Muppirala
Teja Muppirala 2012 年 6 月 14 日
You could try
prod(diag(chol(A)))^2
But I have no idea if/when this would be faster than simply det(A).
  1 件のコメント
Gaurav Gupta
Gaurav Gupta 2012 年 6 月 14 日
I have tried this before posting question, but there is no improvement over time.

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeMathematics についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by