Notice also how there is a lot of different levels of darkness in the background, wondering if that too may be an issue.
Isolating specific dots in an image.
4 ビュー (過去 30 日間)
古いコメントを表示
Hello, I'm trying to get my image to the point where only the dots inside the black squares remain.
So far, all I've done with this code is use inmextendedmin on the original grayscale image, and then masked it ontop of the grayscale image to produce this result.
figure(1);
imshow(grayImage);
mask = imextendedmin(grayImage,2);
figure(2);
imshow(mask);
figure(3);
imshowpair(grayImage,mask,'blend');
Before, I had been trying to use watershedding, dividing the background, and a lot of other neat tricks to try and single out the black dots, but it seems that this simple bit of code alone gets me half way to what I want (As each black square has a dot already in it, all i want are those dots). Is there a way to get rid of everything else in this image besides the gray dots inside the black dots?
The problem I often had with watershedding and whatnot is I needed a variable threshold, as well as watershedding was rather time and processes intensive, so I'm trying to find more efficient ways of doing it.
採用された回答
Anton Semechko
2018 年 6 月 21 日
im=imread('https://www.mathworks.com/matlabcentral/answers/uploaded_files/122320/2steps%20from%20perfection.PNG');
im=max(im,[],3);
bw_bkg=imfill(im<=50,'holes');
bw=im>50 & bw_bkg;
figure, imshow(bw)
0 件のコメント
その他の回答 (1 件)
Kimo Kalip
2018 年 6 月 22 日
13 件のコメント
Anton Semechko
2018 年 6 月 26 日
編集済み: Anton Semechko
2018 年 6 月 26 日
For your type of image data, you can try to automate threshold selection as follows:
(1) Initialize threshold (e.g., thr=10)
(2) Apply threshold to image and count the number of connected components (representing the "wells" in which the white dots are embedded) above some a priori defined area
(3) Increment threshold: thr_new <-- thr + 1
(4) Repeat (2) using thr_new and compare number of connected components obtained with thr, if the number of "wells" decreases, accept thr as best value of intensity threshold and terminate search, otherwise set thr <-- thr_new and go to step (2)
参考
カテゴリ
Help Center および File Exchange で Convert Image Type についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!