how to evaluate a double integral using the trapezoidal rule equation?

23 ビュー (過去 30 日間)
Susan Santiago
Susan Santiago 2018 年 4 月 15 日
回答済み: Apoorv Rajput 2021 年 10 月 7 日
Here's what I have so far
function [ I ] = myTrapz2D( f, x0, xn, y0, yn, nx, ny )
dx = (xn - x0)/nx;
dy = (yn - y0)/ny;
i = 1;
sumx = zeros(nx,1);
sumy =zeros(ny,1);
while i < nx
xi = x0 + i*dx;
sumx(i) = f(xi);
i = i+1;
end
sumx = sum(sumx);
Ix = ((dx)/2)*(f(x0)+f(xn)+(2*sumx));
fd = Ix(y);
while i < ny
yi = y0 + i*dy;
sumy(i) = fd(yi);
i = i+1;
end
sumy = sum(sumy);
I =((dy)/2)*(fd(y0)+fd(yn)+(2*sumy));
end
not sure if it's correct at all but it has to be solved using some variation of the equation for I that I used. I keep getting an error that there aren't enough input arguments. There are my input arguments: f = @(x,y) x.^2 - (2*y.^2) + (x.*y.^3); x0 = 0; xn = 2; y0 = -1; yn = 1; nx = 8; ny = 8;

採用された回答

Torsten
Torsten 2018 年 4 月 16 日
You don't need to program the trapezoidal rule in two dimensions.
Just call the trapezoidal rule in one dimension twice. In the section "Multiple Numeical Integrations" under
https://de.mathworks.com/help/matlab/ref/trapz.html
is an example with the MATALB implementation of the trapezoidal rule "trapz".
Best wishes
Torsten.
  1 件のコメント
Susan Santiago
Susan Santiago 2018 年 4 月 17 日
yes, I'm away that this can be done using trapz, however my assignment involved creating a function like the one I have shown you so, in this case, trapz does not help

サインインしてコメントする。

その他の回答 (1 件)

Apoorv Rajput
Apoorv Rajput 2021 年 10 月 7 日
function [ I ] = myTrapz2D( x0, xn, y0, yn, nx, ny )
syms f(x,y);
syms x;
syms y;
f(x,y)=exp(y-x);
dx = (xn - x0)/nx;
dy = (yn - y0)/ny;
i = 1;
sumx=0*x*y;
while i < nx
xi = x0 + i*dx;
sumx=sumx+ f(xi,y);
i = i+1;
end
Ix = ((dx)/2)*(f(x0,y)+f(xn,y)+(2*sumx));
syms fd(y);
fd(y) = Ix;
sumy=0*y;
i=1;
while i < ny
yi = y0 + i*dy;
sumy= sumy+fd(yi);
i = i+1;
end
I =((dy)/2)*(fd(y0)+fd(yn)+(2*sumy));
end

カテゴリ

Help Center および File ExchangeNumerical Integration and Differentiation についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by