現在この質問をフォロー中です
- フォローしているコンテンツ フィードに更新が表示されます。
- コミュニケーション基本設定に応じて電子メールを受け取ることができます。
Why optimization has a Initial point value
4 ビュー (過去 30 日間)
古いコメントを表示
Why optimization has a Initial point value
4 件のコメント
Geoff Hayes
2018 年 3 月 12 日
Pearwpun - I think most optimization algorithms have an initial point so that the algorithm can then improve upon that point.
Why do you think that it is unnecessary?
Geoff Hayes
2018 年 3 月 12 日
Oh you mean why is the answer the same as your initial value? Is that your question?
Why did you choose 310 as an initial point?
回答 (1 件)
Pearwpun Bunjun
2018 年 3 月 12 日
X0 = 310*ones(1,m);
Lb =(30+273)*ones(1,m);
Ub =(50+273)*ones(1,m);
nonlcon = @constraints;
options = optimoptions(@fmincon,'Algorithm','sqp','MaxIter',300);
[MV,fval]= fmincon(@Obj,X0,[],[],[],[],[],[],@NONLCON,options);
answer is X0 = 310
6 件のコメント
Torsten
2018 年 3 月 12 日
What is @Obj ?
What is @NONLCON (note that "nonlcon" and "NONLCON" are different because MATLAB is case-sensitive) ?
Pearwpun Bunjun
2018 年 3 月 12 日
編集済み: Pearwpun Bunjun
2018 年 3 月 12 日
@Obj=fun @NONLCON=constraints correct @nonlcon is model incorrect did not use
Pearwpun Bunjun
2018 年 3 月 12 日
編集済み: Pearwpun Bunjun
2018 年 3 月 12 日
function PPP7 clear global C1 Tj1 Tjsp1 p m
b = 1.45; % dimensionless : nucleation rate exponential g = 1.5; % dimensionless : growth rate exponential kb = 285.0; % the nucleation rate constant (1/(s um3) kg = 1.44*10^8; % the growth rate constant (um/s) EbR = 7517.0; % Eb/R : the nucleation activation energy/gas constant (K) EgR = 4859.0; % Eg/R : the growth activation energy/gas constant(K) U = 1800; % the overall heat transfer coefficient (kJ/(m2 h K)) A = 0.25; % the total heat transfer surface area (m2) delH = 44.5; % the heat of reaction (kJ/kg) Cp = 3.8; % the heat capacity of the solution (kJ/(kg K)) M = 27.0; % the mass of solvent in the crystallizer (kg) rho = 2.66*10^-12; % the density of crystal (g/um3) kv = 1.5; % the volumetric shape factor
%jacket Parameter Vj=0.015; %m3 Fj=0.001; %m3/s rhoj=1000; %kg/m3 Cpj=4.184; %J/kgK
% Time TTime=30; tf = (60*TTime); % sec (30 min) dt = 20; % sec nt = tf/dt; t = linspace(0,TTime,nt+1);% min sampt= 2; % unit: min % q=1; p=30; m=30; z=0; % initial conditions
C(1) = 0.1743; % g solute/g solvent T(1) = 323; % K Tj(1) =278.3; % K Tjsp(1) = (20+273); % K initial values of manipulated variable %Tsp(1) =(127+273);
%C1(1)=C(1); %T1(1)=T(1); %Tj1(1)=Tj(1); %Tsp1(1)=Tsp(1);
%for Y=1:90
%Tsp(20)=490; % Tsp(Y+1)=Tsp(Y);
%Tsp(52)=450; % Tsp(Y+1)=Tsp(Y); %Tsp(70)=430; % Tsp(Y+1)=Tsp(Y); %end
% Parabolic distribution @ 70-90 um un0(1) = 0; un1(1) = 0; un2(1) = 0; un3(1) = 0; un4(1) = 0; un5(1) = 0;
us0(1) = 70;
us1(1) = 1.8326e+004; us2(1) = 5.0480e+006; us3(1) = 1.3928e+009; us4(1) = 3.8490e+011; us5(1) = 1.0654e+014;
h=waitbar(0,'Simulation in Process...');
for i=1:nt; waitbar(i/nt); % Moment models % the total crystal number uu0(i) = un0(i)+us0(i); % the total crystal length uu1(i) = un1(i)+us1(i); % the total crystal surface area uu2(i) = un2(i)+us2(i); % the total crystal volume uu3(i) = un3(i)+us3(i);
% Saturation concentration (T in celcious)
Temp(i) = T(i)-273;
Cs(i) = 6.29*10^-2+(2.46*10^-3*Temp(i))-(7.14*10^-6*Temp(i)^2);
% Metastable concentration
Cm(i) = 7.76*10^-2+(2.46*10^-3*Temp(i))-(8.10*10^-6*Temp(i)^2);
% Supersaturation
S(i) = (C(i)-Cs(i))/Cs(i);
% The nucleation rate
B(i) = kb*(exp(-EbR/T(i)))*(((C(i)-Cs(i))/Cs(i))^b)*uu3(i);
% The growth rate
G(i) = kg*(exp(-EgR/T(i)))*(((C(i)-Cs(i))/Cs(i))^g);
% Population Balance Equation(PBE)
nr=600;
for j=1:nr+1 % r=0:600
r = j+1;
% Seed
% Initial condition
if r>=250 & r<=300
rs(j,1) = r;
% Parabolic distribution
ns(j,1) = 0.0032*(300-r)*(r-250);
else
rs(j,1) = r;
ns(j,1) = 0;
end % if j>=250 &j<=300
rs(j,i+1) = rs(j,i)+G(i)*dt;
ns(j,i+1) = ns(j,i);
if rs(j,i+1)>600
rs(j,i+1)=600;
end
% Nucleation
% at t=0
if i==1
rn(1,1) = 0;
nn(1,1) = B(1)/G(1);
else % at t=dt
if j==1 % r=0
rn(1,i) = 0;
nn(1,i) = B(i)/G(i);
else
rn(j,i) = rn(j-1,i-1)+G(i)*dt;
nn(j,i) = nn(j-1,i-1);
end % if j==1
end % if i==1
end % for j=1:nr+1
% The crystal size distribution
%%%%%%%%The crystal size distribution
if i==1
Nn = [B(1)/G(1); zeros(nr,1)];
else
Nn = nn([1:nr+1],i);
end
Ns = ns([1:nr+1],i);
n = Nn+Ns;
if i==1
rn([1:nr+1],i) = 0;
else
rn(nr+1,i) = rn(nr,i);
end
rrn = rn([1:nr+1],i);
rrs = rs([1:nr+1],i);
% Moment : Trapezoidal Rule
for k=1:nr+1
% u2
if k==1
sumun22 = rrn(1,1)^2*Nn(1,1);
sumus22 = rrs(1,1)^2*Ns(1,1);
else
sumun22 = sumun22+(((rrn(k-1,1)^2*Nn(k-1,1))+(rrn(k,1)^2*Nn(k,1)))*(rrn(k,1)-rrn(k-1,1))/2);
sumus22 = sumus22+(((rrs(k-1,1)^2*Ns(k-1,1))+(rrs(k,1)^2*Ns(k,1)))*(rrs(k,1)-rrs(k-1,1))/2);
end % if k==1
sumu2=sumun22+sumus22;
% u3
if k==1
sumun33 = rrn(1,1)^3*Nn(1,1);
sumus33 = rrs(1,1)^3*Ns(1,1);
else
sumun33 = sumun33+(((rrn(k-1,1)^3*Nn(k-1,1))+(rrn(k,1)^3*Nn(k,1)))*(rrn(k,1)-rrn(k-1,1))/2);
sumus33 = sumus33+(((rrs(k-1,1)^3*Ns(k-1,1))+(rrs(k,1)^3*Ns(k,1)))*(rrs(k,1)-rrs(k-1,1))/2);
end % if k==1
sumu3=sumun33+sumus33;
% u1
if k==1
sumun11 = rrn(1,1)^1*Nn(1,1);
sumus11 = rrs(1,1)^1*Ns(1,1);
else
sumun11 = sumun11+(((rrn(k-1,1)^1*Nn(k-1,1))+(rrn(k,1)^1*Nn(k,1)))*(rrn(k,1)-rrn(k-1,1))/2);
sumus11 = sumus11+(((rrs(k-1,1)^1*Ns(k-1,1))+(rrs(k,1)^1*Ns(k,1)))*(rrs(k,1)-rrs(k-1,1))/2);
end % if k==1
sumu1=sumun11+sumus11;
% u0
if k==1
sumun00 = rrn(1,1)^0*Nn(1,1);
sumus00 = rrs(1,1)^0*Ns(1,1);
else
sumun00 = sumun00+((rrn(k-1,1)^0*Nn(k-1,1)+rrn(k,1)^0*Nn(k,1))*(rrn(k,1)-rrn(k-1,1))/2);
sumus00 = sumus00+((rrs(k-1,1)^0*Ns(k-1,1)+rrs(k,1)^0*Ns(k,1))*(rrs(k,1)-rrs(k-1,1))/2);
end % if k==1
sumu0=sumun00+sumus00;
% u4
if k==1
sumun44 = rrn(1,1)^4*Nn(1,1);
sumus44 = rrs(1,1)^4*Ns(1,1);
else
sumun44 = sumun44+(((rrn(k-1,1)^4*Nn(k-1,1))+(rrn(k,1)^4*Nn(k,1)))*(rrn(k,1)-rrn(k-1,1))/2);
sumus44 = sumus44+(((rrs(k-1,1)^4*Ns(k-1,1))+(rrs(k,1)^4*Ns(k,1)))*(rrs(k,1)-rrs(k-1,1))/2);
end % if k==1
sumu4=sumun44+sumus44;
% u5
if k==1
sumun55 = rrn(1,1)^5*Nn(1,1);
sumus55 = rrs(1,1)^5*Ns(1,1);
else
sumun55 = sumun55+(((rrn(k-1,1)^5*Nn(k-1,1))+(rrn(k,1)^5*Nn(k,1)))*(rrn(k,1)-rrn(k-1,1))/2);
sumus55 = sumus55+(((rrs(k-1,1)^5*Ns(k-1,1))+(rrs(k,1)^5*Ns(k,1)))*(rrs(k,1)-rrs(k-1,1))/2);
end % if k==1
sumu5=sumun55+sumus55;
end % for k
u2(i) = sumu2;
u3(i) = sumu3;
u1(i) = sumu1;
u0(i) = sumu0;
u4(i) = sumu4;
u5(i) = sumu5;
C1=C(i); Tjsp1=Tjsp(i); Tj1=Tj(i);
% Mass Balance : Solute concentration
C(i+1) = C(i)+dt*(-3*rho*kv*G(i)*u2(i));
% Batch Energy Balance
TT3=T(i);
RR1=(-U*A/(M*Cp*3600)*(T(i)-Tj(i))-delH/Cp*3*rho*kv*G(i)*u2(i));
T(i+1)=T(i)+dt*RR1;
TT4=T(i+1);
Temp(i+1)= T(i+1)-273;
Cs(i+1) = 6.29*10^-2+(2.46*10^-3*Temp(i+1))-(7.14*10^-6*Temp(i+1)^2);
Cm(i+1) = 7.76*10^-2+(2.46*10^-3*Temp(i+1))-(8.10*10^-6*Temp(i+1)^2);
Tj(i+1)= Tj(i)+dt*(Fj/Vj*(Tjsp(i)-Tj(i))+(((U*A/3600)*(T(i)-Tj(i))/rhoj*Vj*Cpj)));
Tjsp(i+1)=Tjsp(i);
% Part III: Calculating the value of manipulated variable %
X0 = T(1)*ones(1,m);
Lb =(30+273)*ones(1,m);
Ub =(50+273)*ones(1,m);
nonlcon = @constraints;
options = optimoptions(@fmincon,'Algorithm','sqp','MaxIter',300);
% options = optimset('Display','iter');
[MV,fval]= fmincon(@Obj,X0,[],[],[],[],[],[],@NONLCON,options);
%x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)
%@(MV)NONLCON(MV)
SS4=MV;
SS1=MV(1);
T(i+1) = MV(1);
%Moment model
%u3
%Neacleated class
un3(i+1) = sumun33+dt*(3*G(i)*sumun22);
%Seed class
%Virtual process
us3(i+1) = sumus33+dt*(3*G(i)*sumus22);
%the total crystal volume
uu3(i+1)=un3(i+1)+us3(i+1);
%u2
%Neacleated class
un2(i+1) = sumun22+dt*(2*G(i)*sumun11);
%Seed class
%Virtual process
us2(i+1) = sumus22+dt*(2*G(i)*sumus11);
%the total crystal surface area
uu2(i+1)=un2(i+1)+us2(i+1);
%u1
%Neacleated class
un1(i+1) = sumun11+dt*(1*G(i)*sumun00);
%Seed class
%Virtual process
us1(i+1) = sumus11+dt*(1*G(i)*sumus00);
%the total crystal volume
uu1(i+1)=un1(i+1)+us1(i+1);
%u0
%Neacleated class
un0(i+1) = sumun00+dt*(0*G(i)*sumun00);
%Seed class
%Virtual process
us0(i+1) = sumus00+dt*(0*G(i)*sumus00);
%the total crystal volume
uu0(i+1)=un0(i+1)+us0(i+1);
end delete(h) % DELETE the waitbar; don't try to CLOSE it.
save ppp7.mat RR1 TT3 TT4 figure subplot(2,1,1) stairs(t,T,'-b') legend('Reactor Temp') ylabel('T(k)') xlabel('Time (min)')
subplot(2,1,2) plot(t,C,'-b') legend('Concentration') xlabel('Time (min)') ylabel('C')
figure subplot(2,1,1) plot(t,Tj,'r',t,Tjsp,'b') legend('Tj') xlabel('Time (min)') ylabel('Tj')
figure subplot(1,1,1)
stairs(t,Tjsp,'r') legend('Tjsp') xlabel('Time (min)') ylabel('Tjsp')
function f = Obj(MV,m,p,C,Tj,Tjsp)
global C1 Tj1 Tjsp1 p m Lw II1 II2 II3 II4 II5
% Process parameters : Potassium sulfate (K2SO4-H2O) b = 1.45; % dimensionless : nucleation rate exponential g = 1.5; % dimensionless : growth rate exponential kb = 285.0; % the nucleation rate constant (1/(s um3) kg = 1.44*10^8; % the growth rate constant (um/s) EbR = 7517.0; % Eb/R : the nucleation activation energy/gas constant (K) EgR = 4859.0; % Eg/R : the growth activation energy/gas constant(K) U = 1800; % the overall heat transfer coefficient (kJ/(m2 h K)) A = 0.25; % the total heat transfer surface area (m2) delH = 44.5; % the heat of reaction (kJ/kg) Cp = 3.8; % the heat capacity of the solution (kJ/(kg K)) M = 27.0; % the mass of solvent in the crystallizer (kg) rho = 2.66*10^-12; % the density of crystal (g/um3) kv = 1.5; % the volumetric shape factor %jacket Parameter Vj=0.015; %m3 Fj=0.001; %m3/s rhoj=1000; %kg/m3 Cpj=4.184; %J/kgK
% Step size, Sampling time and process time % tf = 1800; % sec (30 min) dt = 20; % sec nt = tf/dt; t = linspace(0,30,nt+1);% min sampt= 2; % unit: min %
Cobj = C1 ; % g solute/g solvent Tobj = MV ; % K Tjobj = Tj1 ; % K Tjspobj = Tjsp1;
q=1; z=0;
% Parabolic distribution @ 70-90 um un0(1) = 0; un1(1) = 0; un2(1) = 0; un3(1) = 0; un4(1) = 0; un5(1) = 0;
us0(1) = 70;
us1(1) = 1.8326e+004; us2(1) = 5.0480e+006; us3(1) = 1.3928e+009; us4(1) = 3.8490e+011; us5(1) = 1.0654e+014;
for C=1:1:p
if C>m
Tobj(C)= Tobj(C-1)
end
end
for z=1:p
% Moment models
% the total crystal number
uu0(z) = un0(z)+us0(z);
% the total crystal length
uu1(z) = un1(z)+us1(z);
% the total crystal surface area
uu2(z) = un2(z)+us2(z);
% the total crystal volume
uu3(z) = un3(z)+us3(z);
% Saturation concentration (T in celcious)
Temp(z) = Tobj(z)-273;
Cs(z) = 6.29*10^-2+(2.46*10^-3*Temp(z))-(7.14*10^-6*Temp(z)^2);
% Metastable concentration
Cm(z) = 7.76*10^-2+(2.46*10^-3*Temp(z))-(8.10*10^-6*Temp(z)^2);
% Supersaturation
S(z) = (Cobj(z)-Cs(z))/Cs(z);
% The nucleation rate
B(z) = kb*(exp(-EbR/Tobj(z)))*(((Cobj(z)-Cs(z))/Cs(z))^b)*uu3(z);
% The growth rate
G(z) = kg*(exp(-EgR/Tobj(z)))*(((Cobj(z)-Cs(z))/Cs(z))^g);
% Population Balance Equation(PBE)
nr=600;
for j=1:nr+1 % r=0:600
r = j+1;
% Seed
% Initial condition
if r>=250 & r<=300
rs(j,1) = r;
% Parabolic distribution
ns(j,1) = 0.0032*(300-r)*(r-250);
else
rs(j,1) = r;
ns(j,1) = 0;
end % if j>=250 &j<=300
rs(j,z+1) = rs(j,z)+G(z)*dt;
ns(j,z+1) = ns(j,z);
if rs(j,z+1)>600
rs(j,z+1)=600;
end
% Nucleation
% at t=0
if z==1
rn(1,1) = 0;
nn(1,1) = B(1)/G(1);
else % at t=dt
if j==1 % r=0
rn(1,z) = 0;
nn(1,z) = B(z)/G(z);
else
rn(j,z) = rn(j-1,z-1)+G(z)*dt;
nn(j,z) = nn(j-1,z-1);
end % if j==1
end % if i==1
end % for j=1:nr+1
% The crystal size distribution
%%%%%%%%The crystal size distribution
if z==1
Nn = [B(1)/G(1); zeros(nr,1)];
else
Nn = nn([1:nr+1],z);
end
Ns = ns([1:nr+1],z);
n = Nn+Ns;
if z==1
rn([1:nr+1],z) = 0;
else
rn(nr+1,z) = rn(nr,z);
end
rrn = rn([1:nr+1],z);
rrs = rs([1:nr+1],z);
% Moment : Trapezoidal Rule
for k=1:nr+1
% u2
if k==1
sumun22 = rrn(1,1)^2*Nn(1,1);
sumus22 = rrs(1,1)^2*Ns(1,1);
else
sumun22 = sumun22+(((rrn(k-1,1)^2*Nn(k-1,1))+(rrn(k,1)^2*Nn(k,1)))*(rrn(k,1)-rrn(k-1,1))/2);
sumus22 = sumus22+(((rrs(k-1,1)^2*Ns(k-1,1))+(rrs(k,1)^2*Ns(k,1)))*(rrs(k,1)-rrs(k-1,1))/2);
end % if k==1
sumu2=sumun22+sumus22;
% u3
if k==1
sumun33 = rrn(1,1)^3*Nn(1,1);
sumus33 = rrs(1,1)^3*Ns(1,1);
else
sumun33 = sumun33+(((rrn(k-1,1)^3*Nn(k-1,1))+(rrn(k,1)^3*Nn(k,1)))*(rrn(k,1)-rrn(k-1,1))/2);
sumus33 = sumus33+(((rrs(k-1,1)^3*Ns(k-1,1))+(rrs(k,1)^3*Ns(k,1)))*(rrs(k,1)-rrs(k-1,1))/2);
end % if k==1
sumu3=sumun33+sumus33;
% u1
if k==1
sumun11 = rrn(1,1)^1*Nn(1,1);
sumus11 = rrs(1,1)^1*Ns(1,1);
else
sumun11 = sumun11+(((rrn(k-1,1)^1*Nn(k-1,1))+(rrn(k,1)^1*Nn(k,1)))*(rrn(k,1)-rrn(k-1,1))/2);
sumus11 = sumus11+(((rrs(k-1,1)^1*Ns(k-1,1))+(rrs(k,1)^1*Ns(k,1)))*(rrs(k,1)-rrs(k-1,1))/2);
end % if k==1
sumu1=sumun11+sumus11;
% u0
if k==1
sumun00 = rrn(1,1)^0*Nn(1,1);
sumus00 = rrs(1,1)^0*Ns(1,1);
else
sumun00 = sumun00+((rrn(k-1,1)^0*Nn(k-1,1)+rrn(k,1)^0*Nn(k,1))*(rrn(k,1)-rrn(k-1,1))/2);
sumus00 = sumus00+((rrs(k-1,1)^0*Ns(k-1,1)+rrs(k,1)^0*Ns(k,1))*(rrs(k,1)-rrs(k-1,1))/2);
end % if k==1
sumu0=sumun00+sumus00;
% u4
if k==1
sumun44 = rrn(1,1)^3*Nn(1,1);
sumus44 = rrs(1,1)^3*Ns(1,1);
else
sumun44 = sumun44+(((rrn(k-1,1)^3*Nn(k-1,1))+(rrn(k,1)^3*Nn(k,1)))*(rrn(k,1)-rrn(k-1,1))/2);
sumus44 = sumus44+(((rrs(k-1,1)^3*Ns(k-1,1))+(rrs(k,1)^3*Ns(k,1)))*(rrs(k,1)-rrs(k-1,1))/2);
end % if k==1
sumu4=sumun44+sumus44;
% u5
if k==1
sumun55 = rrn(1,1)^3*Nn(1,1);
sumus55 = rrs(1,1)^3*Ns(1,1);
else
sumun55 = sumun55+(((rrn(k-1,1)^3*Nn(k-1,1))+(rrn(k,1)^3*Nn(k,1)))*(rrn(k,1)-rrn(k-1,1))/2);
sumus55 = sumus55+(((rrs(k-1,1)^3*Ns(k-1,1))+(rrs(k,1)^3*Ns(k,1)))*(rrs(k,1)-rrs(k-1,1))/2);
end % if k==1
sumu5=sumun55+sumus55;
end
u2(z) = sumu2;
u3(z) = sumu3;
u1(z) = sumu1;
u0(z) = sumu0;
u4(z) = sumu4;
u5(z) = sumu5;
% Mass Balance : Solute concentration
TT1=Tobj(z);
RR5 =real(-3*rho*kv*G(z)*u2(z));
Cobj(z+1) = Cobj(z)+dt*RR5;
% Batch Energy Balance
WW=real(-U*A/(M*Cp*3600)*(Tobj(z)-Tjobj(z))-delH/Cp*3*rho*kv*G(z)*u2(z));
Tobj(z+1)= Tobj(z)+dt*WW;
TT2=Tobj(z+1);
Temp(z+1)= Tobj(z+1)-273;
Cs(z+1) = (6*10^-5)*exp(0.0396*Temp(z+1));
Tjobj(z+1)= Tjobj(z)+dt*(Fj/Vj*(Tjspobj(z)-Tjobj(z))+(((U*A/3600)*(Tobj(z)-Tjobj(z))/rhoj*Vj*Cpj)));
Tjspobj(z+1)=Tjspobj(z);
%Moment model
%u3
%Neacleated class
un3(z+1) = sumun33+dt*(3*G(z)*sumun22);
%Seed class
%Virtual process
us3(z+1) = sumus33+dt*(3*G(z)*sumus22);
%the total crystal volume
uu3(z+1)=un3(z+1)+us3(z+1);
%u2
%Neacleated class
un2(z+1) = sumun22+dt*(2*G(z)*sumun11);
%Seed class
%Virtual process
us2(z+1) = sumus22+dt*(2*G(z)*sumus11);
%the total crystal surface area
uu2(z+1)=un2(z+1)+us2(z+1);
%u1
%Neacleated class
un1(z+1) = sumun11+dt*(1*G(z)*sumun00);
%Seed class
%Virtual process
us1(z+1) = sumus11+dt*(1*G(z)*sumus00);
%the total crystal volume
uu1(z+1)=un1(z+1)+us1(z+1);
%u0
%Neacleated class
un0(z+1) = sumun00+dt*(0*G(z)*sumun00);
%Seed class
%Virtual process
us0(z+1) = sumus00+dt*(0*G(z)*sumus00);
%the total crystal volume
uu0(z+1)=un0(z+1)+us0(z+1);
%u4
%Neacleated class
un4(z+1) = sumun44+dt*(4*G(z)*sumun44);
%Seed class
%Virtual process
us4(z+1) = sumus44+dt*(4*G(z)*sumus44);
%the total crystal volume
uu4(z+1)=un4(z+1)+us4(z+1);
%u5
%Neacleated class
un5(z+1) = sumun55+dt*(5*G(z)*sumun55);
%Seed class
%Virtual process
us5(z+1) = sumus55+dt*(5*G(z)*sumus55);
%the total crystal volume
uu5(z+1)=un5(z+1)+us5(z+1);
end %fori=1:nt SS6=real(un3(p)); SS5=real(us3(p));
Lw=real(uu3/uu2); II1=[Tobj>=303]; II5= [Tobj<=323]; II2=[Cs<=Cobj]; II3= [us3(p)>=8.3301*10^9]; II4 = [Tobj(z+1)<=abs((2*dt)+Tobj(z))]
f= SS6/SS5;
function [c1,c2,c3,c4,c5,ceq] = NONLCON(MV)
global Lw II1 II2 II3 II4 II5 Lw1 =Lw; c1 = double(II1) c2 = double(II2); c3 = double(II3); c3 = double(II4); c5 = double(II5) ceq = [];
参考
カテゴリ
Help Center および File Exchange で Crystals についてさらに検索
タグ
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!エラーが発生しました
ページに変更が加えられたため、アクションを完了できません。ページを再度読み込み、更新された状態を確認してください。
Web サイトの選択
Web サイトを選択すると、翻訳されたコンテンツにアクセスし、地域のイベントやサービスを確認できます。現在の位置情報に基づき、次のサイトの選択を推奨します:
また、以下のリストから Web サイトを選択することもできます。
最適なサイトパフォーマンスの取得方法
中国のサイト (中国語または英語) を選択することで、最適なサイトパフォーマンスが得られます。その他の国の MathWorks のサイトは、お客様の地域からのアクセスが最適化されていません。
南北アメリカ
- América Latina (Español)
- Canada (English)
- United States (English)
ヨーロッパ
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom(English)
アジア太平洋地域
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)
