Area of two identical overlapping ellipses
2 ビュー (過去 30 日間)
古いコメントを表示
Hi, I have two identical overlapping ellipses (one is moved by 0.2 in the y direction). How can I calculate the overlapping area?
I know how to analytically solve the overlapping area of two identical circles, but the analytical solution for two identical overlapping ellipses is very hard to find...Maybe Matlab can do it numerically or by comparing pixels?
My two ellipses are generated using the following code:
a = 1;
b = sqrt(2);
x0=0;
y0=0;
t=-pi:0.01:pi;
x=x0+a*cos(t);
y=y0+b*sin(t);
m1=fill(x,y,'b')
m1.FaceAlpha=0.2;
y01=y0+0.2;
y1=y01+b*sin(t);
hold on
m2=fill(x,y1,'r')
m2.FaceAlpha=0.2;
0 件のコメント
採用された回答
John D'Errico
2017 年 12 月 20 日
編集済み: John D'Errico
2017 年 12 月 20 日
Pretty simple actually as just a transformation of variables.
You claim to have the analytical solution for a pair of circles, with a simple y offset.
Solve the problem for a pair of circles with unit radius, where one circle is offset in y by a delta of 0.2/b. (.2/b is important here.) Get the area as A_c. (Thus the area of intersection for two circles of radius 1.)
Now, if you implicitly transform the variables such that
X_e = x_c*a
Y_e = Y_c*b
The area of the ellipse intersection will be a*b*A_c.
5 件のコメント
John D'Errico
2017 年 12 月 20 日
Exactly. Were one of the ellipses rotated, it gets a bit messy. But this case is a simple one.
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Surface and Mesh Plots についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!