Simple Linear Algebra problem that's confusing me.

2 ビュー (過去 30 日間)
Yingquan Li
Yingquan Li 2012 年 4 月 25 日
I'm stuck for the longest time on this problem: Find a row vector l such that lA = l, with A = [.2 .8; .7 .3]. This is somehow related to eigenvalues, is there such thing as a row eigenvector? thanks - Yingquan
  1 件のコメント
Richard Brown
Richard Brown 2012 年 4 月 26 日
a "row" eigenvector is usually called a left eigenvector

サインインしてコメントする。

回答 (1 件)

Wayne King
Wayne King 2012 年 4 月 25 日
I don't want to just give you the answer, but think of it this way
1.) Think of the typical eigenvalue problem, I'll use B as the matrix
Bx = \lambda x
2.) if 1 were an eigenvalue of B with some corresponding eigenvector x, then
Bx = x
3.) Now what if you transposed both sides of the above equation and let B'=A (where ' is the transpose)
Now do you see?
  2 件のコメント
Antony Chung
Antony Chung 2012 年 4 月 26 日
Are you saying to do B'*x'=x'?
3.) confused me a little bit.
Richard Brown
Richard Brown 2012 年 4 月 26 日
don't forget the rule about transposing products ...

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeLinear Algebra についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by