Info

この質問は閉じられています。 編集または回答するには再度開いてください。

How can I numerically find a solution of a series of two differential equations.

1 回表示 (過去 30 日間)
Muhammad Islam
Muhammad Islam 2017 年 10 月 26 日
閉鎖済み: MATLAB Answer Bot 2021 年 8 月 20 日
So, I have to numerically find the solution to the following system (image attached) in a neighborhood of the equilibrium. Equilibrium in this case is x'(t)=0 & y'(t)=0.
Also these are the values of the constants. Alpha=4 Beta=3 L=2 k=1
What should be the MATLAB code for this? One friend suggested using ode45 but I do not know exactly how.
[In case you cannot view the image:
X’(t) = -alpha x(t) + k y(t)
Y’(t) = L x(t) – beta y(t)]
  2 件のコメント
Birdman
Birdman 2017 年 10 月 26 日
There is no image attached.
Muhammad Islam
Muhammad Islam 2017 年 10 月 26 日
X’(t) = -alpha x(t) + k y(t)
Y’(t) = L x(t) – beta y(t)

回答 (1 件)

Roger Stafford
Roger Stafford 2017 年 10 月 26 日
編集済み: Roger Stafford 2017 年 10 月 26 日
This is hardly a matlab problem. At an equilibrium you would have the equations:
-4*x + 1*y = 0
2*x - 3*y = 0
The only possible simultaneous solution for that is x = y = 0.
The general solution to that problem is:
x = C1*exp(-2*t)-C2*exp(-5*t)
y = 2*C1*exp(-2*t)+C2*exp(-5*t)
where C1 and C2 are constants depending on initial conditions of x and y. To arrive at a "neighborhood" of x' = 0 and y' = 0, you would have to approach infinity for t. In other words, equilibrium is only approached asymptotically.

この質問は閉じられています。

製品

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by