Finding Jacobian matrix for Newton's method
14 ビュー (過去 30 日間)
古いコメントを表示
I have a very basic newton's method that uses a loop and:
y = Jac(x)\(-F(x));
x = x + y;
to solve for the approximate solution.
Where x is a the initial guess in the form of a vector, F is the nonlinear function, and Jac is the jacobian matrix. Currently, I am inputting the jacobian by hand.
For example, system of equations =
2x(1) + x(2)
3x(1) + x(2)^2
=> Jac(x) =
[2, 1; 3, 2x(2)]
I was wondering if instead of solving it by hand if I could get Matlab to do it for me.
0 件のコメント
採用された回答
Walter Roberson
2012 年 4 月 13 日
If you have the symbolic toolbox you can use the jacobian() function.
2 件のコメント
Walter Roberson
2019 年 8 月 8 日
x = sym('x', [1 2]);
eqn = [2*x(1) + x(2)
3*x(1) + x(2)^2];
jacobian(eqn, x)
その他の回答 (1 件)
DIPANKAR POREY
2019 年 8 月 7 日
2x(1) + x(2)
3x(1) + x(2)^2
=> Jac(x) =
[2, 1; 3, 2x(2)]
1 件のコメント
Walter Roberson
2019 年 8 月 8 日
This does not appear to be an answer? It appears to be a copy of part of the question.
参考
カテゴリ
Help Center および File Exchange で Calculus についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!