How to define the bounds of Gamma distribution (a,b)

2 ビュー (過去 30 日間)
Houda
Houda 2017 年 6 月 4 日
コメント済み: Star Strider 2017 年 6 月 5 日
Hey everybody, I am looking for how to calculate the interval of the gamma density distribution when setting the priors in Bayesian estimation. For beta(a,b) the mean of X= E(X)=a/(a+b) and variance is V(X)=(a+b)/(a+b+1)(a+b)^2, as we define the mean and varaince from the common values in the literature I return and calculate a and b. Please for gamma (a,b) distribution with E(X)=0.74 and std(X)=0.0056 how to find a and b? Many thanks in advance.

採用された回答

Star Strider
Star Strider 2017 年 6 月 4 日
The Wikipedia article on the Gamma distribution (link) indicates that:
gamma_mean = a*b;
gamma_var = a*b^2;
so with your data:
gamma_mean = 0.74
gamma_var = 0.0056^2 % Var is StDev^2
b = gamma_var/gamma_mean
a = gamma_mean/b
b =
4.2378e-05
a =
17462
  4 件のコメント
Houda
Houda 2017 年 6 月 4 日
Thanks a lot because I tried before to resolve this issue but with to not avail, thanks to you I found correct results as the autho, however, in many cases it was impossible. I attached the paper you can check by your self (table 2 P1274). take care.
Star Strider
Star Strider 2017 年 6 月 5 日
My pleasure.
I will look through the paper.

サインインしてコメントする。

その他の回答 (0 件)

製品


Translated by