How to use rbf_kernel parameters with svmtrain() and svmclassify() for svm classification
2 ビュー (過去 30 日間)
古いコメントを表示
By using linear kernel I got the result using svmtrain() and svmclassify() function. But the result obtained is not so accurate. When I used rbf_kernel I got an error as follows. Please help me how to use parameters with example
>> load fisheriris >> data = [meas(:,1), meas(:,2)]; >> groups = ismember(species,'setosa'); >> [train, test] = crossvalind('holdOut',groups); >> cp = classperf(groups); >> svmStruct = svmtrain(data(train,:),groups(train),'showplot',true);
//Error below
>> svmStruct = svmtrain(data(train,:),groups(train),'kernel_function','1'); ??? Error using ==> svmtrain at 266 Unknown Kernel Function 1.
0 件のコメント
回答 (3 件)
Tom Lane
2012 年 3 月 28 日
From your description, it sounds like you intended
svmStruct = svmtrain(data(train,:),groups(train),'kernel_function','rbf');
In any case, the error message simply means that '1' isn't a valid value to follow the 'kernel_function' parameter name.
1 件のコメント
Yasir Mohammed
2016 年 5 月 30 日
svmStruct =svmtrain(data(train,:),groups(train),'kernel_function','rbf'); i used this but i also have the same error
Error using svmclassify (line 75) Unknown parameter name: kernel_function.
Error in SVMtest (line 14) testresult = svmclassify(svmStructSurprise,testone,'kernel_function','rbf' );
>>
Pratik Oak
2013 年 3 月 22 日
Use this:
svmStruct = svmtrain(data(train,:),groups(train),'RBF_Sigma','1')
name of kernel function should be added
0 件のコメント
Farman Shah
2018 年 8 月 14 日
編集済み: Farman Shah
2018 年 8 月 14 日
_ _ _ _ _ _ _ _ _ _ _ * * * * * * * * * *svmStruct =svmtrain(data(train,:),groups(train),'kernel_function','rbf'); i used this but i also have the same error
Error using svmclassify (line 75) Unknown parameter name: kernel_function.
Error in SVMtest (line 14) testresult = svmclassify(svmStructSurprise,testone,'kernel_function','rbf' );
>>**********____
Dear you are getting the error because you are adding 'Kernel_Function', 'polynomial', 'Polyorder', 4 to svmclassify.Add this kernal parameter to the trainsvm function instead..i.e
SVMStruct = svmtrain(features_train,labels_train,'Kernel_Function', 'polynomial', 'Polyorder', 4);
and it will work... _____
1 件のコメント
Tsalsabilla Winny Junika
2019 年 5 月 29 日
what about the svmclassify? Is that any change for that code???
参考
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!