Why knnsearch () function slows down the code?
3 ビュー (過去 30 日間)
古いコメントを表示
I have to make feature vector in which I have to store distance between a candidate feature point and its four neighboring feature points. I am using knnsearch() for this purpose. However it slows down the code. How can I improve this?
Below is my code.
N = sum(cn_image(:) == 1) + sum(cn_image(:) == 3) + sum(cn_image(:) == 4); %Number of rows in feature Matrix
featr_vect = zeros(N,8);
for i = 1:size(cn_image,1)
for j = 1 : size(cn_image,2)
if (cn_image(i,j) == 1) || (cn_image(i,j) == 3) || (cn_image(i,j) == 4)
[Idx D] = knnsearch(cn_image(:), cn_image(i,j), 'k', 4, 'distance, 'euclidean');
end
end
end
2 件のコメント
Jan
2017 年 4 月 3 日
Slows down the code compared to what? Of course searching for groups costs some time.
回答 (1 件)
Jan
2017 年 4 月 3 日
編集済み: Jan
2017 年 4 月 3 日
Currently your code overwrites Idx and D in each iteration. This is a massive waste of time. If only the last classification is wanted:
index = find(ismember(cn_image(:), [1, 3, 4]), 1, 'last');
[Idx D] = knnsearch(cn_image(:), cn_image(index), 'k', 4, 'distance, 'euclidean');
If the overwriting of Idx and D appears in the code posted here only and not in the real code: Please post the relevant part of the code. Such abbreviations are misleading frequently.
Optimizing code is hard, when the readers cannot run it. Better post some relevant input data, such that we can check our suggestions.
1 件のコメント
参考
カテゴリ
Help Center および File Exchange で Classification Trees についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!