Function evaluation in each iteration of pattern search exceeding 2* (number of optimization variable)

1 回表示 (過去 30 日間)
* Newbie to global optimization toolbox *
Hi,
I am trying to perform constrained optimization using pattern search.
  • Since the search method in pattern search is specified as GSSPositiveBasisNp1 (see definition of options below), I am expecting the number of function evaluations (FE) at each iteration to be 2 * (number of optimization variables = 45).
  • However, when I perform the optimization, typical number of FE at each iteration is ~300 while it should be 90 (2*45).
The options that I use in pattern search is :
options = psoptimset('Display','iter', 'PlotFcns' , {@psplotfuncount, @psplotbestf}, 'UseParallel', 'always', 'TolFun', 1E-3, ...
'CompletePoll', 'on', 'SearchMethod', 'GSSPositiveBasisNp1', 'OutputFcn', @psoutputfcn );
optimalSol = patternsearch( fHandle, initialGuess, [], [], [], [], lb, ub, [],options);
Can you help me identify the issue here, and fix it?

採用された回答

jgg
jgg 2016 年 1 月 29 日
編集済み: jgg 2016 年 1 月 29 日
You have 'SearchMethod' enabled. This is an optional step which performs a search prior to the polling, resulting in the large number of extra function evaluations. Searching is different from polling in patternsearch's implementation in Matlab; it's basically like a local-prescreening of the most recent best point to improve convergence performance.
I think the option you actually want is 'PollMethod' instead.
  5 件のコメント
Sam T
Sam T 2016 年 1 月 30 日
jgg: The FE is expensive since I am solving nonlinear dynamical system.
Walter: I am running it on a cluster which has 16 cores and 64GB memory.
Walter Roberson
Walter Roberson 2016 年 1 月 30 日
That might be a situation under which it would be advantageous to add an NVIDIA Tesla GPU

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeDirect Search についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by