please help me to solve nonlinear equations

1 回表示 (過去 30 日間)
rahman sajadi
rahman sajadi 2015 年 10 月 5 日
コメント済み: Walter Roberson 2015 年 10 月 6 日
.5<m<1
[(3*(Cos[x1] - Cos[x2] + Cos[x6] - Cos[x7])+4*(Cos[x3] - Cos[x4] + Cos[x5])-7*Pi*(m)/4)=0,
(3*(Cos[5 x1] - Cos[5 x2] + Cos[5 x6] - Cos[5 x7])+4*(Cos[5 x3] - Cos[5 x4] + Cos[5 x5]))=0,
(3*(Cos[7 x1] - Cos[7 x2] + Cos[7 x6] - Cos[7 x7]) + 4*(Cos[7 x3] - Cos[7 x4] + Cos[7 x5]))=0,
(3*(Cos[11 x1] - Cos[11 x2] + Cos[11 x6] - Cos[11 x7])+4*(Cos[11 x3] - Cos[11 x4] + Cos[11 x5]))=0,
(3*(Cos[13 x1] - Cos[13 x2] + Cos[13 x6] - Cos[13 x7])+4*(Cos[13 x3] - Cos[13 x4] + Cos[13 x5]))=0,
(3*(Cos[17 x1] - Cos[17 x2] + Cos[17 x6] - Cos[17 x7])+4*(Cos[17 x3] - Cos[17 x4] + Cos[17 x5]))=0,
(1.3*(Cos[x1] - Cos[x2] + Cos[x6] - Cos[x7]) - (Cos[x3] - Cos[x4] + Cos[x5]))=0  
{0.05 < x1 < x2 < x3 < x4 < x5 < x6 < x7 < Pi/2 }
  2 件のコメント
Walter Roberson
Walter Roberson 2015 年 10 月 6 日
Someone else has posted a number of these kinds of questions over the last while. A persistent question that has not been answered is whether it is desired to find one solution or if it is required to find all solutions ?
Walter Roberson
Walter Roberson 2015 年 10 月 6 日
Analytically you cannot really reduce this by more than 2 variables, in that any additional reductions become too unwieldly. The second reduction results at best in a root of a 5th order equation for the second variable, with the alternatives being worse.

サインインしてコメントする。

回答 (0 件)

カテゴリ

Help Center および File ExchangeSolver Outputs and Iterative Display についてさらに検索

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by