フィルターのクリア

Sliding neighborhood - how to vectorize?

1 回表示 (過去 30 日間)
Alex Kurek
Alex Kurek 2015 年 9 月 25 日
編集済み: Joseph Cheng 2015 年 10 月 2 日
Dear all,
Can you please help me to vectorize (or speed-up somehow else) this code? Below is the original (parfor) version and the vectorized one, but its not working (the image is different). How to vectorize this, where is the error? The inner loop (two lines) is executed 47 bln times in my code, so any speed up is a good thing.
noised = imnoise(zeros(230,230), 'salt & pepper', 0.2);
imshow(noised, []); impixelinfo
%%Oryginal
myTempModel = zeros(1, 230);
signalInBlock = zeros(230, 230);
tic
parfor i = 1 : 199
myTemp = myTempModel;
ii=i+31;
for j = 1 : 199
block = noised( i:ii, j:j+31);
myTemp(j+15) = sum(block(:));
end
signalInBlock(i+15, :) = myTemp;
end
toc
imshow(signalInBlock,[]); impixelinfo
%%Vectorized, but not working
signalInBlock = zeros(230, 230);
tic
i = 1:1:199;
j = 1:1:199;
signalInBlock(i+15, j+15) = sum(sum(noised(i:i+31, j:j+31)));
toc
imshow(signalInBlock,[]); impixelinfo
Best regards, Alex

採用された回答

Joseph Cheng
Joseph Cheng 2015 年 9 月 25 日
why not use conv2?
signalInBlock2 = zeros(230, 230);
tic
temp = conv2(noised,ones(32,32),'valid');
signalInBlock2(16:214,16:214)=temp;
figure,imshow(signalInBlock2,[]);
toc
when running your code the parfor took 0.327807 seconds, the conv2 took 0.131374 seconds
  3 件のコメント
Alex Kurek
Alex Kurek 2015 年 9 月 30 日
編集済み: Alex Kurek 2015 年 9 月 30 日
I tried this:
noiseFrameCollector = zeros(230, 230, 30);
signalInBlock = noiseFrameCollector;
zzz = 1:1:30;
tic
signalInBlock(:,:,zzz) = squaredFrameProcess(noiseFrameCollector(:,:,zzz), signalInBlock);
toc
But got the following error:
Undefined function 'conv2' for input arguments of type 'double' and attributes 'full 3d real'. Error in squaredFrameProcess (line 3) temp = conv2(noised, arrayOnes, 'valid');
Is there any other possibility?
Joseph Cheng
Joseph Cheng 2015 年 10 月 2 日
編集済み: Joseph Cheng 2015 年 10 月 2 日
for that conv2 is for a 2D matrix if my memory of the documentation is correct. you can write a for loop to go through each "layer" of signalblock. which if large the parallel tool box can make if faster if it is really slow since each "layer" is not dependent on each other. As for GPU processing, i'm still dabbling in using the GPU so i'm not sure.

サインインしてコメントする。

その他の回答 (1 件)

Alex Kurek
Alex Kurek 2015 年 9 月 25 日
Thank you,
I implemented it like this (toc after figure, preallocation):
signalInBlock2 = zeros(230, 230);
tic
arrayOnes = ones(32,32);
temp = conv2(noised, arrayOnes, 'valid');
signalInBlock2(16:214, 16:214) = temp;
toc
figure, imshow(signalInBlock2, []);
And it takes 0.005525 seconds with is 34x faster.
Now I wonder if there is something faster than conv2
  2 件のコメント
Joseph Cheng
Joseph Cheng 2015 年 9 月 25 日
編集済み: Joseph Cheng 2015 年 9 月 25 日
good catch, I stuck the figure portion towards the end to visually compare the parfor output and the conv2 output. forgot to copy the timing results without the figure when replying to you
Image Analyst
Image Analyst 2015 年 9 月 25 日
conv2() is highly optimized, especially for separable kernels like you're using (just a flat box filter). You won't find anything faster. You could compare it with imfilter() if you want - it's similar.

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeGPU Computing についてさらに検索

製品

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by