attempting to write a fixed point sqrt function

1 回表示 (過去 30 日間)
Amardeep
Amardeep 2011 年 12 月 7 日
Hi everybody;
I am trying to write a function to cubicly converge on a solution to a square root in fixed point. I am getting bad overflow and when I try to bitshift to eliminate it my solutions reduce to zero. My code is included below. Please help.
function [iterSqrt] = iterFixedPointSqrtCC (val)
numIter = 20;
x = zeros(numIter,1);
x(1) = 1*2^24;
botlim = 1;
if val < botlim
x(numIter) = 0;
else
for n = (2:1:numIter)
x(n-1) = int32(x(n-1));
xnMinusOneSq = bitshift(bitshift(x(n-1),-8)*bitshift(x(n-1),-8),-8);
topLineBkts = xnMinusOneSq+3*val;
botLine = 3*xnMinusOneSq+val;
topLine = bitshift(x(n-1),-12)*bitshift(topLineBkts,-12);
x(n) = int32(bitshift(bitshift(uint32(topLine),6)/bitshift(uint32(botLine),-6),12));
end
end
iterSqrt = x(numIter);
I am using a for loop as while loops do tend to be problematic when going for an embedded target. the value to be rooted comes in scaled by 2^24. I am attempting to implement method 3 from http://chenfuture.wordpress.com/2008/01/03/simple-ways-to-compute-square-root/.
Any suggestions are most welcome.
Thanks
Amardeep
  1 件のコメント
Amardeep
Amardeep 2011 年 12 月 8 日
The overflow occurs on the line 'topline = ...'

サインインしてコメントする。

採用された回答

Amardeep
Amardeep 2011 年 12 月 8 日
I managed to get the quadratic convergence formula working in the interval 0 to 16 which is what I need. The mean error is in the region of 5*10^-4.
function [iterSqrt] = iterFixedPointSqrtQC (val)
numIter = uint32(30);
x = uint32(zeros(numIter,1));
x(1) = uint32(16777216);
for n = (2:1:numIter)
if x(n-1) == 0
x(n) = uint32(0);
else
divs = uint32(bitshift(uint32(bitshift(uint32(val),4) / bitshift(x(n-1),-4)),16));
x(n) = uint32(bitshift(4096*bitshift((x(n-1)+divs),-11),-2));
end
end
iterSqrt = x(numIter);

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeMatrix Indexing についてさらに検索

製品

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by