Rolling window using by while loop
1 回表示 (過去 30 日間)
古いコメントを表示
Hello, I am currently working on the comparison of the constructed portfolios using out-of-sample variance criteria. I am going to use rolling window procedure for the comparison. First, I choose a window over which to perform estimation. Length of estimation window let say t is smaller than n, where n is the total number of returns (n=168). I use estimation window of t=120 data points which correspond to 10 years for monthly data. Second, using the return data over the estimation window, t, I compute various portfolios. I repeat this rolling window procedure for the next month and dropping the data for the earliest month. I continue this until the end of the dataset is reached. At the end of the this process, I will have generated n-t portfolio weight vectors (which should be 48 vectors in total) for each strategy. I am trying to do this with while loop in Matlab. There is a bug in the loop, it always gives the dimension error but I could not solve the problem. You can also reach my codes below. I would be very glad for your any help. Thank you
% initialization & downloading data
A1=importdata('data.txt');
n1=unique(date1)
n=length(n1)
p=length(return1)/n
yy=reshape(return1, [n, p]) % reshape as a matrix
[n,p]=size(yy)
meanx=mean(yy)
yyy=zeros(168,450); % convert cell to a matrix
for i=1:168
for j=1:450
yyy(i,j)=yy(i,j);
end
end
i=0;
while (i<=47.5)
x=yy(i+1:i+120,:);
% de-mean returns
n=size(x,1);
p=size(x,2);
meanx=mean(x);
x=x-meanx(ones(n,1),:);
xmkt=mean(x')';
% compute sample covariance matrix
sample=cov([x xmkt])*(n-1)/n;
covmkt=sample(1:p,p+1);
varmkt=sample(p+1,p+1);
sample(:,p+1)=[];
sample(p+1,:)=[];
% compute prior (F)
prior=covmkt*covmkt'./varmkt;
prior(logical(eye(p)))=diag(sample);
if (nargin < 2 | shrink == -1) % compute shrinkage parameters
c=norm(sample-prior,'fro')^2;
y=x.^2;
pr=1/n*sum(sum(y'*y))-sum(sum(sample.^2));
rdiag=1/n*sum(sum(y.^2))-sum(diag(sample).^2);
z=x.*xmkt(:,ones(1,p));
v1=1/n*y'*z-covmkt(:,ones(1,p)).*sample;
roff1=sum(sum(v1.*covmkt(:,ones(1,p))'))/varmkt...
-sum(diag(v1).*covmkt)/varmkt;
v3=1/n*z'*z-varmkt*sample;
roff3=sum(sum(v3.*(covmkt*covmkt')))/varmkt^2 ...
-sum(diag(v3).*covmkt.^2)/varmkt^2;
roff=2*roff1-roff3;
r=rdiag+roff;
% compute shrinkage constant (k/n)
k=(pr-r)/c;
shrinkage=max(0,min(1,k/n));
else % use specified number
shrinkage = shrink;
end
% compute the estimator
sigma=shrinkage*prior+(1-shrinkage)*sample;
% compute the inverse of the covariance matrix
insigma=inv(sigma);
% portfolio optimization
meanp=(meanx)';
Rmax=mean(meanp);
M=48;
u=ones(p,1);
a=zeros(2,2);
a(1,1)=u'*insigma*u;
a(1,2)=meanp'*insigma*u;
a(2,1)=a(1,2)
a(2,2)=meanp'*insigma*meanp;
d=a(1,1)*a(2,2)-a(1,2)*a(1,2);
f=(insigma*(a(2,2)*u-a(1,2)*meanp))/d;
g=(insigma*(-a(1,2)*u+a(1,1)*meanp))/d;
r=Rmax;
w=zeros(450,M);
sigmap=zeros(M,1);
for m=1:M
w(:,m)=f+r(m)*g;
sigmap(m)=sqrt(w(:,m)*sigma*w(:,m));
end
s= sqrt(a(1,1)*((r - a(1,2)/a(1,1))^2)/d + 1/a(1,1));
minrisk=sqrt(1/a(1,1));
minreturn=a(1,2)/a(1,1);
wminp=f +(a(1,2)/a(1,1))*g;
sharpe= Rmax/s;
tanrisk=sqrt(a(2,2))/a(1,2);
tanreturn=a(2,2)/a(1,2);
wtanp=f+(a(2,2)/a(1,2))*g;
i=i+1
end
1 件のコメント
回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Portfolio Optimization and Asset Allocation についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!