Fourier Series Representation of Periodic Functions

25 ビュー (過去 30 日間)
Joseph
Joseph 2024 年 10 月 31 日 14:34
回答済み: Star Strider 2024 年 10 月 31 日 15:02
I have to represent a periodic functon with a fourier series where:
f(t) = 1, 0 <= t < 0.4
-1, 0.4 <=t < 0.5
With a period of 1 and N = 5.
Working off an example I found, I came up with the code below. I know it isn't correct and I'm really uncertain how and where to put the values for f(t). I also don't know if this does the same thing as integral(exp(-j*k*omega_0*t). I appreciate any help I can get.
syms k t T omega_0
N1 = 10;
a_k = piecewise(k == 0, .5, 2 / (k * omega_0 * T) * sin(k * omega_0 * T / 4));
T_val = 1;
phi_k = exp(1i * k * omega_0 * t);
mega_0_val = 2 * pi / T_val;
f_hat = symsum(a_k * phi_k, k, -N1, N1);
f_hat_substituted = subs(f_hat, [T, omega_0], [T_val, omega_0_val]);
t_val = linspace(-1, 1, 1000);
f_hat_evaluated = double(subs(f_hat_substituted, t, t_val));
figure;
plot(t_val, abs(f_hat_evaluated), 'LineWidth', 2);
xlabel('Time (t)');
ylabel('f(t)');
title('Approximated f(t)');
grid on;
axis([-1 1 -0.1 1.1]);

回答 (1 件)

Star Strider
Star Strider 2024 年 10 月 31 日 15:02
I would write the piecewise call differently —
syms t omega
a_k = piecewise(0 <= t < 0.4, 1, 0.4 <= t < 0.5, -1)
figure
fplot(a_k, [-1 1])
grid
axis('padded')
xlabel('t')
ylabel('a_k')
title('Time Domain Representation')
A_k = int(a_k*exp(-1j*omega*t), t, 0, 0.5)
A_k = simplify(A_k, 500)
figure
fplot(real(A_k),[-1 1]*pi*25, '-b')
hold on
fplot(imag(A_k),[-1 1]*pi*25, '--b')
fplot(abs(A_k),[-1 1]*pi*25, '-r')
hold off
grid
axis('padded')
xlabel('\omega')
ylabel('Magnitude')
title('Fourier Transform')
You likely have a different intent than simply producing a plot of the Fourier transform. However thiis should get you started.
.

カテゴリ

Help Center および File ExchangeCalculus についてさらに検索

製品


リリース

R2024a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by