フィルターのクリア

Design of Strong Prescribed Time (SPT) Controller for Manipulator (Example 2)

40 ビュー (過去 30 日間)
controlEE
controlEE 2024 年 6 月 26 日
コメント済み: Sam Chak 2024 年 8 月 15 日 17:29
I'm working on implementing a Strong Prescribed Time (SPT) controller for a manipulator in MATLAB. I've successfully designed the controller for the first example provided in a research paper. However, I'm facing challenges with the second example. Designing the SPT controller for the second example's manipulator dynamics.
The paper (Ding et al., 2023) outlines the SPT controller design procedure and manipulator dynamics.
type Exmp2.m
h=5; a = -0.15; history = @(t)[-0.2;0.1;0.1]; % Define the Rh function based on the given conditions Rh = @(t) (0 <= t & t < h) .* 0 + ... (h <= t & t <= 2*h) .* ((t-h).^5.*(2*h-t).^5) + ... (t > 2*h) .* 0; % Define the PDF gain function based on Rh W_c = integral(@(s) Rh(s) .* exp(2 * a * s), h, 2 * h); W = 1 / W_c; K_a_h = @(t) Rh(t) .* W .* exp(-a * (h - 2 * t)); % Define the delay differential equation dde = @(t,x,Z)manipulator_dynamics(t,x,Z,K_a_h); sol = dde23(dde, h, history, [0 40]); % Plot results figure; subplot(3,1,1); plot(sol.x, sol.y(1,:)); xlabel('Time (s)'); ylabel('x1 (error in q)'); title('State x1 vs Time'); subplot(3,1,2); plot(sol.x, sol.y(2,:)); xlabel('Time (s)'); ylabel('x2 (error in dq)'); title('State x2 vs Time'); subplot(3,1,3); plot(sol.x, sol.y(3,:)); xlabel('Time (s)'); ylabel('x3 (error in I)'); title('State x3 vs Time'); % DDE function function dxdt = manipulator_dynamics(t, x, Z, K_a_h) x1_d = 0; x2_d = 0; x3_d = 0; a = -0.15; % Example value tau = 81/83; % Example value h = 5; % Example value J = 1.625e-3; % kg·m² m = 0.506; % kg L0 = 0.305; % m R0 = 0.023; % m B0 = 16.25e-3; % N·m·s/rad L = 25e-3; % H R = 5; % Ω K_tau = 0.9; % N·m/A G = 9.81; % m/s² M0 = 0.434; % kg % Derived parameters M = J / K_tau + m * L0^2 / (3 * K_tau) + M0 * L0^2 / K_tau + 2 * M0 * R0^2 / (5 * K_tau); N = m * L0 * G / (2 * K_tau) + M0 * L0 * G / K_tau; B = B0 / K_tau; K_B = 0.9; Vp = 0.1 * sin(50 * pi *t); z1 = x(1) - x1_d; z2 = x(2) - x2_d; z3 = x(3) - x3_d; z3lag = Z(3,1) - x3_d; % Control input u = L * ((-a / (2 * (1 - tau))) * z3 + x3_d ... + R / L * x(3) + K_B / L * x(2) ... - 5 * sign(z3) ... - (K_a_h(t) / (2 * (1 - tau))) * (sig(z3 * (abs(z3lag)^(2 * (1 - tau)))))^(2 * tau - 1)); % Desired trajectory q_d = (pi / 2) * sin(t) * (1 - exp(-0.1 * t^2)); % Dynamics dxdt = [x(2); (N / M) * sin(q_d) - (N / M) * sin(x(1) + q_d) - (B / M) * x(2) + (1 / M) * x(3); -(R / L) * x(3) - (K_B / L) * x(2) + (1 / L) * u + Vp / L]; end function sigx = sig(x) tau = 81/83; sigx = sign(x) .* abs(x).^(2 * tau - 1); end
  18 件のコメント
controlEE
controlEE 2024 年 8 月 15 日 13:30
編集済み: controlEE 2024 年 8 月 15 日 13:31
I have successfully matched the states and control effort to those depicted in the article.
Moving forward, I plan to make improvements in the system's response and aim to generalize the method further. While the article mentions the control effort in the context of a SISO system, I am considering extending this approach to MIMO systems and other nonlinear systems. I appreciate your guidance as I explore these avenues.
Sam Chak
Sam Chak 2024 年 8 月 15 日 17:29
Congratulations! It is excellent to know that your persistence and efforts have paid off. Would you consider posting the full MATLAB code and the Simulink model in the ANSWER section below so that interested researchers can study how you successfully implemented the Strong Prescribed-time Stabilized Nonlinear Periodic-Delayed Feedback Controller (SPTSNPDFC)?

サインインしてコメントする。

回答 (0 件)

カテゴリ

Help Center および File ExchangeRobotics についてさらに検索

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by