Solving non linear delay differential equations with dde23

3 ビュー (過去 30 日間)
Jacobo Levy Abitbol
Jacobo Levy Abitbol 2015 年 4 月 23 日
コメント済み: Torsten 2015 年 4 月 23 日
i'm working on a delay differential equation that looks like this: f(y,z,y',z')(t)=a(y,z)(t)+b(y,z)(t-tau) g(y,z,y',z')(t)=c(y,z)(t)+d(y,z)(t-tau) The problem is, in MATLAB, dde23 only solves DDE when the differential terms are isolated (y'=F(t,y,ydel,z,zdel) , z'=G(t,y,ydel,z,zdel)).
Do you know if there's a way to work around it (or perhaps another available tool)? I've tried ddnsd assuming a null delay for delayed differential term but it only accepts non zero delays). Also trying to isolate y' and z' has revealed useless. Thank you

採用された回答

Torsten
Torsten 2015 年 4 月 23 日
Just solve the system
f(y,z,y',z')(t)=a(y,z)(t)+b(y,z)(t-tau) g(y,z,y',z')(t)=c(y,z)(t)+d(y,z)(t-tau)
for y',z' (two nonlinear equations in the unknowns y' and z').
A possible tool is MATLAB's fsolve.
Best wishes
Torsten.
  2 件のコメント
Jacobo Levy Abitbol
Jacobo Levy Abitbol 2015 年 4 月 23 日
Thank you for your quick answer, but wouldn't fsolve try to approximate y' and z'? (and therefore when there's an equilibrium in the system, it won't be able to represent the dynamical state of the system)
Torsten
Torsten 2015 年 4 月 23 日
If
f(y,z,y',z')= y'^2+sin(z')
g(y,z,y',z')=log(y')+atan(z')
e.g., fsolve will numerically solve the system
y'^2+sin(z')=a(y,z)(t)+b(y,z)(t-tau)
log(y')+atan(z')=c(y,z)(t)+d(y,z)(t-tau)
for y',z' if you declare y' and z' as the unknowns (all other variables are given).
And this s exactly what is needed for dde23 to work.
Best wishes
Torsten.

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeDelay Differential Equations についてさらに検索

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by