Eq1(t) =
imshow(imread('WhatsApp Image...16.45 PM.jpeg'))
syms M(t) I_1(t) I_2 V(t) t g mu A Y T
Eq1 = diff(M) == -g*V*A
Eq2 = diff(V) == I_1*g/(I_1+I_2) - 8*pi*mu*V/(g*A)
Eq3 = diff(I_1) == -V
[VF,Subs] = odeToVectorField(Eq1, Eq2, Eq3)
fcn = matlabFunction(VF, 'Vars',{T,Y,g,I_2,mu,A})
g = rand
I2 = rand
mu = rand
A = rand
[t,y] = ode45(@(t,y)fcn(t,y,g,I2,mu,A), [0,100], rand(3,1));
figure
plot(t, y)
grid
xlabel('Time')
ylabel('Amplitude')
legend(string(Subs), 'Location','best')
Make appropriate corrections to the symbolic variables (I am not certain that I transcribed them correctly), supply values for the constants parameters, and then use ode45 (or ode15s if the parameters vary significantly in magnitude) to solve it numerically.
.