How to plot Taylors approximation using pre-calculated generalized summation formula
2 ビュー (過去 30 日間)
古いコメントを表示
Hi All,
I have came accross the function taylor() exampl. T = taylor(log(x), x, 'ExpansionPoint', 2); by using it I get perfect result
but I'd like to plot results of my own pre-calculated Taylors aproximation of x Order. I started with f(x)=ln(x) for 0<=x<5 when approximation is around x=1 (therefor a=1) at n points [0,2,4,6]
This is what I got.
BTW: I am total newbie, and any hint more then appriciated
clear
clc
close all
%taylors series of ln(x)
x=0:5;
a=1;
SumN=0; % initialize SumN
sign=-1; % variable that assigns a sign to a term
timepoints = 0:0.1:6;
y= zeros(1,length(timepoints));
%adding bells and whistles
fig = figure();
set(fig,'color','white')
grid on
xlabel('x')
ylabel('y')
for n=1:length(y)
SumN= @(x) ((sign).^(n+1)*((x-a).^n))/n;
y(n) = SumN(timepoints(n));
end
plot(timepoints,y,'r-','LineWidth',2);
legend('Taylor series')
Thank you
7 件のコメント
VBBV
2024 年 3 月 9 日
編集済み: VBBV
2024 年 3 月 9 日
p = plot(rand(4)); % plot returns 4 x 1 line array
NameArray1 = {'LineStyle'}; %
NameArray2 = {'LineWidth'};
ValueArray1 = {'-','--',':','-.'};
ValueArray2 = [1.5, 1.5 2 2];
for k = 1:numel(p) % use a loop to set the individual line styles
set(p(k),NameArray1{1},ValueArray1{k},NameArray2{1},ValueArray2(k)); %
end
回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Surface and Mesh Plots についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!