現在この質問をフォロー中です
- フォローしているコンテンツ フィードに更新が表示されます。
- コミュニケーション基本設定に応じて電子メールを受け取ることができます。
Spatial discretization in pdepe compared to others
2 ビュー (過去 30 日間)
古いコメントを表示
The spatial discretization in pdepe seems to be a unique one. Could someone please explain it briefly so that it is understandable in terms of how it differs from other finite differences? Also on the stability and accuracy.
11 件のコメント
Torsten
2024 年 1 月 30 日
編集済み: Torsten
2024 年 1 月 30 日
Did you read the reference for "pdepe" ?
[1] Skeel, R. D. and M. Berzins, "A Method for the Spatial Discretization of Parabolic Equations in One Space Variable," SIAM Journal on Scientific and Statistical Computing, Vol. 11, 1990, pp.1–32.
?
It should be a usual finite-element discretization in 1d, shouldn't it ?
Torsten
2024 年 1 月 30 日
編集済み: Torsten
2024 年 1 月 30 日
The authors claim in the introduction that they "propose a simple piecewise nonlinear Galerkin / Petrov-Galerkin method that is second-order accurate in space". These methods are summarized under Finite Element Methods as far as I know. But if you have doubts, you can either read the relevant chapters in a book on the numerical solution of partial differential equations or contact Technical Support to get further details.
feynman feynman
2024 年 2 月 1 日
Thanks. It will be good to get answers from this community because I don't really know how to contact the technical support. If it's a Galerkin / Petrov-Galerkin method, I wonder about the stability and what sorts of hyperbolic equations it can't solve.
Torsten
2024 年 2 月 1 日
編集済み: Torsten
2024 年 2 月 1 日
Simply speaking, hyperbolic equations need specific discretization schemes for the flux terms so that the solution remains stable. The schemes used for parabolic-elliptic differential equations don't account for this.
Since there is an interaction of spatial discretization and integration in time with ode45, I think not much about the stability of the integration with "pdepe" can be said.
But why do you need these specific information ? Do you want to compare different pde solvers with respect to their capability in solving pdes of different type ?
feynman feynman
2024 年 2 月 1 日
thanks a lot and this helps. I want to summarize what matlab can do in solving PDEs. The pdepe and solvepde seem to be the two go to methods. Can we conclude that the latter is always better?
Torsten
2024 年 2 月 1 日
編集済み: Torsten
2024 年 2 月 1 日
"pdepe" is for one-dimensional, "solvepde" for two- and three-dimensional problems (as far as I can see).
Define "better" !
Broader range of equations that can be solved, more user-friendly, faster, less memory consumption ? I cannot answer this, but "better" is always related to what is required. And since both codes solve problems of different dimension, I don't know exactly how to compare them.
feynman feynman
2024 年 2 月 2 日
I guess solvepde can also solve 1d problems, then in terms of dimensions of solvepde is superior to pdepe.
By better, I mean if solvepde can solve all hyperbolic equations that pdepe can't?
Torsten
2024 年 2 月 2 日
I guess solvepde can also solve 1d problems, then in terms of dimensions of solvepde is superior to pdepe.
If this is the case, my guess is that internally, "pdepe" is called.
By better, I mean if solvepde can solve all hyperbolic equations that pdepe can't?
There is no official MATLAB solver that can solve hyperbolic PDEs.
回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Eigenvalue Problems についてさらに検索
タグ
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!エラーが発生しました
ページに変更が加えられたため、アクションを完了できません。ページを再度読み込み、更新された状態を確認してください。
Web サイトの選択
Web サイトを選択すると、翻訳されたコンテンツにアクセスし、地域のイベントやサービスを確認できます。現在の位置情報に基づき、次のサイトの選択を推奨します:
また、以下のリストから Web サイトを選択することもできます。
最適なサイトパフォーマンスの取得方法
中国のサイト (中国語または英語) を選択することで、最適なサイトパフォーマンスが得られます。その他の国の MathWorks のサイトは、お客様の地域からのアクセスが最適化されていません。
南北アメリカ
- América Latina (Español)
- Canada (English)
- United States (English)
ヨーロッパ
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom(English)
アジア太平洋地域
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)