I am trying to solve this coupled ODE from the past few days using ode45 but there's an error at ode45 function which I am unable to understand .
1 回表示 (過去 30 日間)
古いコメントを表示
close all
clear all
clc
alpha=3.55*10^-3;
sigma=3.7292*10^11;
eta=rand;
TB=3.59*10^8;
delta_t=50*10^-12;
n=1.45;
c=3*10^8;
Q=141.3227*10^-4;
syms t p(t) AL(t) AS(t) f Y
Eq1=diff(AL)==1i*sigma*p(t)*AS(t);
Eq2=diff(AS)==1i*sigma*conj(p(t))*AL(t);
Eq3=(alpha/TB)*diff(p,2)+(alpha-1i)*diff(p)-((1i*TB)/2)*p(t)==eta*AL(t)*conj(AS(t))-1i*f;
[VF,subs]=odeToVectorField(Eq1,Eq2,Eq3);
disp(VF)
% disp(subs)
ftotal=matlabFunction(VF);
real_part=randn();
imag_part=randn();
complex=exp(-(real_part+1i*imag_part))^2;
f=sqrt((n*Q)/(delta_t)^2*c)*complex;
r=sqrt((n*Q)/(c*TB))*complex;
ic=[0 0 r];
tspan=[1 2];
[t, sol] = ode45(@(t,Y) ftotal(t,Y), tspan, ic);
plot(t, sol(:, 1), 'LineWidth', 2, 'DisplayName', 'Eq1');
hold on;
plot(t, sol(:, 2), 'LineWidth', 2, 'DisplayName', 'Eq2');
plot(t, sol(:, 3), 'LineWidth', 2, 'DisplayName', 'Eq3');
xlabel('Time');
ylabel('Solution');
title('Solution of the Coupled ODE System');
grid on;
I have attached the question and the code which I am using it to solve the equations but there is an error at ode45 which I cant understand.
2 件のコメント
Ayush
2024 年 1 月 3 日
could you please paste your code in the code snippet? It is cumbersome to do it from the png.
Sulaymon Eshkabilov
2024 年 1 月 3 日
Please post your whole code. The community can simulate your code and correct it instead of re-typing the whole code.
It looks like you have got a heavy part done.
採用された回答
Sam Chak
2024 年 1 月 3 日
Hi @Yogesh
The first issue is that the free parameter "f" must be defined before its inclusion in the ODEs. All constants and parameters should be moved before the ODE section. The second issue is that since there are 4 states, 4 initial values are required, but only 3 initial values are provided. Theoretically, the code should run after fixing these two main issues. However, the ODE solver fails to integrate from the beginning. This is likely caused by the complex-valued ODEs. Please check the equations.
%% Constant
alpha=3.55*10^-3;
sigma=3.7292*10^11;
eta=rand;
TB=3.59*10^8;
delta_t=50*10^-12;
n=1.45;
c=3*10^8;
Q=141.3227*10^-4;
syms t p(t) AL(t) AS(t) f Y
% --- move to here ---
%% Parameters
real_part=randn();
imag_part=randn();
complex=exp(-(real_part+1i*imag_part))^2;
f=sqrt((n*Q)/(delta_t)^2*c)*complex; % <-- this parameter must be defined before ODE
r=sqrt((n*Q)/(c*TB))*complex;
% --- move to here ---
%% ODE section
Eq1=diff(AL)==1i*sigma*p(t)*AS(t);
Eq2=diff(AS)==1i*sigma*conj(p(t))*AL(t);
Eq3=(alpha/TB)*diff(p,2)+(alpha-1i)*diff(p)-((1i*TB)/2)*p(t)==eta*AL(t)*conj(AS(t))-1i*f;
[VF,subs]=odeToVectorField(Eq1,Eq2,Eq3)
% disp(VF)
% disp(subs)
% ftotal=matlabFunction(VF);
%% Solving the ODEs
ftotal = matlabFunction(VF, 'vars', {'t', 'Y'});
tspan = [1 2];
ic = [0 0 r 0]; % <-- 4 states requires 4 initial values (check the order)
ySol = ode15s(ftotal, tspan, ic);
%% Plotting section
% plot(t, sol(:, 1), 'LineWidth', 2, 'DisplayName', 'Eq1');
% hold on;
% plot(t, sol(:, 2), 'LineWidth', 2, 'DisplayName', 'Eq2');
% plot(t, sol(:, 3), 'LineWidth', 2, 'DisplayName', 'Eq3');
% xlabel('Time');
% ylabel('Solution');
% title('Solution of the Coupled ODE System');
% grid on;
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Ordinary Differential Equations についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!