Evaluate Inverse Laplace transform of a rational function

1 回表示 (過去 30 日間)
proy
proy 2024 年 1 月 2 日
コメント済み: Dyuman Joshi 2024 年 1 月 2 日
Hello.
I have the following rational function:
((4277106574556691*u^4)/1152921504606846976 - (1257694548906265*u^3)/281474976710656 + (5698702517425679*u^2)/4398046511104 + (1997475952800115*u)/137438953472 - 531873529530479/8589934592)/(u^4 + (4199658565989735*u^3)/70368744177664 + (2823782334942045*u^2)/1099511627776 + (5310607259221623*u)/549755813888 - 8541529549052223/137438953472)
When I try to find Inverse Laplace Transform, I got the following answer:
(4277106574556691*dirac(t))/1152921504606846976 + (9189017890449910061927721134279467*symsum((exp(root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k)*t)*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k))/(361444138872581760*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k) + 12598975697969205*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k)^2 + 281474976710656*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k)^3 + 679757729180367744), k, 1, 4))/9007199254740992 - (9774801846638324177398136662629971*symsum(exp(t*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k))/(12598975697969205*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k)^2 + 281474976710656*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k)^3 + 361444138872581760*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k) + 679757729180367744), k, 1, 4))/2251799813685248 + (1630461552184412442890819099501081*symsum((exp(t*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k))*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k)^2)/(12598975697969205*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k)^2 + 281474976710656*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k)^3 + 361444138872581760*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k) + 679757729180367744), k, 1, 4))/18014398509481984 - (380468160178698203651280037243045*symsum((exp(t*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k))*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k)^3)/(12598975697969205*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k)^2 + 281474976710656*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k)^3 + 361444138872581760*root(z^4 + (4199658565989735*z^3)/70368744177664 + (2823782334942045*z^2)/1099511627776 + (5310607259221623*z)/549755813888 - 8541529549052223/137438953472, z, k) + 679757729180367744), k, 1, 4))/1152921504606846976
How do I evaluate this function at some points? Like t=1? There are other variables and I can't evaluate the expression.

採用された回答

Dyuman Joshi
Dyuman Joshi 2024 年 1 月 2 日
Use subs to substitute in place of a symbolic variable (or function, expression, array) -
syms u
%Expression
fun = ((4277106574556691*u^4)/1152921504606846976 - (1257694548906265*u^3)/281474976710656 + (5698702517425679*u^2)/4398046511104 + (1997475952800115*u)/137438953472 - 531873529530479/8589934592)/(u^4 + (4199658565989735*u^3)/70368744177664 + (2823782334942045*u^2)/1099511627776 + (5310607259221623*u)/549755813888 - 8541529549052223/137438953472);
%Inverse laplace of the expression, w.r.t the specified variable
%t is the default symbolic variable for inv laplace
FUN = ilaplace(fun, u);
out = subs(FUN, u, 1)
out = 
Now, you can use vpa() or double() to obtain the numerical value -
val1 = vpa(out)
val1 = 
0.023921292634752566165032684725215
val2 = double(out)
val2 = 0.0239
  2 件のコメント
proy
proy 2024 年 1 月 2 日
Thank you very much!
Dyuman Joshi
Dyuman Joshi 2024 年 1 月 2 日
You're welcome!

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeSymbolic Math Toolbox についてさらに検索

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by