Problem with nature of curve in MATLAB

5 ビュー (過去 30 日間)
charu shree
charu shree 2023 年 7 月 19 日
Hello all, I had written the following MATLAB code for which I am expecting the downward curve as output, However I am getting exactly opposite. Any help in this regard will be highly appreciated.
clc;
clear all;
close all;
%% Initialization
Mod = 4; % As RF signal is QPSK modulated
N = 256; % spreading gain i.e., one bit from tag remains constant for N s(n), Given in paper
zeta = 0.8; % tag reflection coefficient, Given in paper
P_s = 1; % power of s(n), given in paper
v_h = 1; % variance of channel between s-r, given in paper
v_f =1; % variance of channel between s-t, given in paper
v_g = 1;% variance of channel between t-r, given in paper
M_train = 10^3; % no. of tag symbols for training
M_test = 10^3;
N_w = 1; % var of noise , not given in paper
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
constellation = 1/sqrt(2)*[1+1i, -1+1i, -1-1i, 1-1i];
As = constellation;
M_train_detail = int32(randi([0, 1], [1, M_train])); % generating random tag symbols
%% SNR loop
ec_SVM = [];
for snr = -15:5:15
snr
feat_training = []; label_train = [];
for m = 1:M_train % This is for +1
m
g = sqrt(v_g/2)*(randn(1,1)+1i*randn(1,1)); % ch bet t-r
f = sqrt(v_f/2)*(randn(1,1)+1i*randn(1,1)); % ch bet s-t
h = sqrt(v_h/2)*(randn(1,1)+1i*randn(1,1)); % ch bet s-r
xn = randi([1 4], 1, N);
sn = constellation(xn);
wn = sqrt(N_w/2)*(randn(1,N)+1i*randn(1,N)); % AWGN
yn_1 = ((h+(zeta*f*g)).*sn)+(10^(-snr/20).*wn); % Received Signal with + 1
psi_m_1 = h+(zeta*f*g); psi_m_1_herm = conj(psi_m_1); psi_m_1_herm_nrm_sq = (norm(psi_m_1_herm))^2;
A1 = psi_m_1_herm/psi_m_1_herm_nrm_sq;
for n = 1:N
for k1 = 1:length(As)
P1(k1) = (abs(A1*yn_1(n)-As(k1)))^2;
%abs(y1'/(norm(y1)^2)*y(n) - s_API(k1))^2; %MRC
end
[min_P1_P,ind_P1_P] = min(P1);
s_m_hat_pls(1,n) = As(ind_P1_P);
end
en_pls_1 = ((norm(yn_1-(psi_m_1*s_m_hat_pls)))^2);
en_pls = (1/N)*(en_pls_1);
feat_train_pls = en_pls;
yn_0 = ((h-(zeta*f*g)).*sn)+(10^(-snr/20).*wn); % Received Signal with - 1
psi_m_0 = h-(zeta*f*g);
psi_m_0_herm = conj(psi_m_0);
psi_m_0_herm_nrm_sq = (norm(psi_m_0_herm))^2;
A0 = psi_m_0_herm/psi_m_0_herm_nrm_sq;
for n = 1:N
for k1 = 1:length(As)
P0(k1) = (abs(A0*yn_0(n)-As(k1)))^2;
end
[min_P0_P,ind_P0_P] = min(P0);
s_m_hat_min(1,n) = As(ind_P0_P);
end
en_min_1 = ((norm(yn_0-(psi_m_0*s_m_hat_min)))^2);
en_min = (1/N)*(en_min_1);
feat_train_min = en_min;
feat_train = [feat_train_pls,feat_train_min];
feat_training = [feat_training;feat_train];
if en_pls<en_min
labl_train = -1;
label_train = [label_train;labl_train];
else
labl_train = 1;
label_train = [label_train;labl_train];
end
end
% Model train
Mdl_SVM = fitcsvm(feat_training,label_train); % Model is trained
% Test data
[label_test,feat_test] = data_test7(v_h,v_f,v_g,N_w,N,M_test,zeta,As,snr,constellation);
Predic_label_SVM = predict(Mdl_SVM,feat_test);
% computing error count
ec_SVM = err_count(Predic_label_SVM, label_test, M_test,ec_SVM);
end
ber_sim_SVM = ec_SVM./(M_test); % simulated BER
%% Plot
SNRdB = -15:5:15;
figure(1)
semilogy(SNRdB,ber_sim_SVM,'g -','LineWidth',1);
%semilogy(SNRdB,err_kernel_SVM,'b*',SNRdB,ber_sim_SVM,'g-',SNRdB,err_kernel_KNN,'r*',SNRdB,ber_sim_KNN,'k--',SNRdB,err_kernel_RF,'r+',SNRdB,ber_sim_RF,'b-','LineWidth',1);
grid on
xlabel('SNR in dB')
ylabel('BER , error kernel')
%legend('error Kernel: SVM','BER: SVM','error Kernel: KNN','BER: KNN', 'error Kernel: RF','BER: RF')
axis([min(SNRdB) max(SNRdB) 1e-2 1])
%% Code related to function data_test7
function [label_test,feat_testing] = data_test7(v_h,v_f,v_g,N_w,N,M,zeta,As,snr,constellation)
% Test symbols for each SNR
feat_testing = []; label_test = [];
M_test_detail = int32(randi([0, 1], [1, M])); % generating random tag symbols
As;
constellation;
for m = 1:M % This is for +1
m
g = sqrt(v_g/2)*(randn(1,1)+1i*randn(1,1)); % ch bet t-r
f = sqrt(v_f/2)*(randn(1,1)+1i*randn(1,1)); % ch bet s-t
h = sqrt(v_h/2)*(randn(1,1)+1i*randn(1,1)); % ch bet s-r
xn = randi([1 4], 1, N);
sn = constellation(xn);
wn = sqrt(N_w/2)*(randn(1,N)+1i*randn(1,N)); % AWGN
yn_1 = ((h+(zeta*f*g)).*sn)+(10^(-snr/20).*wn); % Received Signal with + 1
psi_m_1 = h+(zeta*f*g); psi_m_1_herm = conj(psi_m_1); psi_m_1_herm_nrm_sq = (norm(psi_m_1_herm))^2;
A1 = psi_m_1_herm/psi_m_1_herm_nrm_sq;
for n = 1:N
for k1 = 1:length(As)
P1(k1) = (abs(A1*yn_1(n)-As(k1)))^2;
%abs(y1'/(norm(y1)^2)*y(n) - s_API(k1))^2; %MRC
end
[min_P1_P,ind_P1_P] = min(P1);
s_m_hat_pls(1,n) = As(ind_P1_P);
end
en_pls_1 = ((norm(yn_1-(psi_m_1*s_m_hat_pls)))^2);
en_pls = (1/N)*(en_pls_1);
feat_test_pls = en_pls;
yn_0 = ((h-(zeta*f*g)).*sn)+(10^(-snr/20).*wn); % Received Signal with - 1
psi_m_0 = h-(zeta*f*g);
psi_m_0_herm = conj(psi_m_0);
psi_m_0_herm_nrm_sq = (norm(psi_m_0_herm))^2;
A0 = psi_m_0_herm/psi_m_0_herm_nrm_sq;
for n = 1:N
for k1 = 1:length(As)
P0(k1) = (abs(A0*yn_0(n)-As(k1)))^2;
end
[min_P0_P,ind_P0_P] = min(P0);
s_m_hat_min(1,n) = As(ind_P0_P);
end
en_min_1 = ((norm(yn_0-(psi_m_0*s_m_hat_min)))^2);
en_min = (1/N)*(en_min_1);
feat_test_min = en_min;
feat_test = [feat_test_pls,feat_test_min];
feat_testing = [feat_testing;feat_test];
if en_pls<en_min
labl_test = -1;
label_test = [label_test;labl_test];
else
labl_test = 1;
label_test = [label_test;labl_test];
end
end
end
%% Code related to function err_count
function [ec_SVM] = err_count(Predic_label_SVM, labl_test, M,ec_SVM)
error_count = 0;
for i = 1: M % for loop to compare the labels
if Predic_label_SVM(i) ~= labl_test(i)
error_count = error_count + 1;
end
end
%end
ec_SVM =[ec_SVM, error_count]; % store error count for plot
end

回答 (0 件)

カテゴリ

Help Center および File ExchangeQPSK についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by