Seventh order differential equation
13 ビュー (過去 30 日間)
古いコメントを表示
Hello,
I would like to solve this system of differential equations in Matlab (and in the end I would like to plot tau and sigma for -l and +l x values):
with these BCs:
where P, h_i, G_i, h_i are numbers (which I would like to define in the code).
Here I started with this:
% y''''''' - a*y'''''' + b*y''' - c*y' = 0
syms s x y(x) Y
Dy = diff(y);
D2y = diff(y,2);
D3y = diff(y,3);
D4y = diff(y,4);
D5y = diff(y,5);
D6y = diff(y,6);
D7y = diff(y,7);
a==10
b==60
c==40
Eqn = D7y - a*D5y + b*D3y -c*Dy == 0;
0 件のコメント
採用された回答
Torsten
2023 年 4 月 14 日
編集済み: Torsten
2023 年 4 月 15 日
% Set model parameters
l = 1;
P = 1;
Ga = 1;
Eatilde = 1;
ha = 1;
E1tilde = 1;
h1 = 1;
E2tilde = 1;
h2 = 1;
xmesh = linspace(-l,l,100);
solinit = bvpinit(xmesh, [1 1 1 1 1 1 1 0 0 0]);
sol = bvp4c(@(x,y)bvpfcn(x,y,l,P,Ga,Eatilde,ha,E1tilde,h1,E2tilde,h2), @(ya,yb)bcfcn(ya,yb,l,P,Ga,Eatilde,ha,E1tilde,h1,E2tilde,h2),solinit);
x = sol.x;
tau = sol.y(1,:);
sigma = ((4/(E1tilde*h1)+2/(E2tilde*h2))*sol.y(2,:)- ha/Ga*sol.y(4,:))/(6/(E1tilde*h1^2));
figure(1)
plot(x,tau)
figure(2)
plot(x,sigma)
function dydx = bvpfcn(x,y,l,P,Ga,Eatilde,ha,E1tilde,h1,E2tilde,h2)
sigma = ((4/(E1tilde*h1)+2/(E2tilde*h2))*y(2) - ha/Ga*y(4))/(6/(E1tilde*h1^2));
d7ydx7 = Ga/ha*(4/(E1tilde*h1)+2/(E2tilde*h2))*y(6) - Eatilde/ha*12/(E1tilde*h1^3)*y(4) + (12*Eatilde*Ga/(E1tilde^2*h1^4*ha^2) + 24*Eatilde*Ga/(E1tilde*E2tilde*h1^3*h2*ha^2))*y(2);
dydx = [y(2);y(3);y(4);y(5);y(6);y(7);d7ydx7;y(1);sigma;x*sigma];
end
function res = bcfcn(ya,yb,l,P,Ga,Eatilde,ha,E1tilde,h1,E2tilde,h2)
d2sigma_a = ((4/(E1tilde*h1)+2/(E2tilde*h2))*ya(4) - ha/Ga*ya(6))/(6/(E1tilde*h1^2));
d2sigma_b = ((4/(E1tilde*h1)+2/(E2tilde*h2))*yb(4) - ha/Ga*yb(6))/(6/(E1tilde*h1^2));
res = [ya(8);yb(8)+P;ya(9);yb(9);ya(10);yb(10)-P*(h1+ha)/2;d2sigma_a;d2sigma_b;ya(2)-Ga/ha*P/(E1tilde*h1);yb(2)+Ga/ha*2*P/(E2tilde*h2)];
end
7 件のコメント
Torsten
2023 年 4 月 18 日
編集済み: Torsten
2023 年 4 月 18 日
Try this code whether you get a different result.
It's the analytical solution of your equation.
% Set model parameters
l = 25;
P = 100;
Ga = 1071;
Eatilde = 3000;
ha = 0.3;
E1tilde = 1;
h1 = 5;
E2tilde = 75000;
h2 = 5;
syms x tau(x)
% Solve differential equation
eqn = diff(tau,x,7) - Ga/ha*(4/(E1tilde*h1)+2/(E2tilde*h2))*diff(tau,x,5) + Eatilde/ha*12/(E1tilde*h1^3)*diff(tau,x,3) - (12*Eatilde*Ga/(E1tilde^2*h1^4*ha^2) + 24*Eatilde*Ga/(E1tilde*E2tilde*h1^3*h2*ha^2))*diff(tau,x) == 0;
tau = dsolve(eqn)
tau0 = tau;
tau1 = diff(tau,x);
tau2 = diff(tau,x,2);
tau3 = diff(tau,x,3);
tau4 = diff(tau,x,4);
tau5 = diff(tau,x,5);
tau6 = diff(tau,x,6);
tau7 = diff(tau,x,7);
sigma = ((4/(E1tilde*h1)+2/(E2tilde*h2))*tau1 - ha/Ga* tau3)/(6/(E1tilde*h1^2));
sigma2 = diff(sigma,x,2);
% Solve for free parameters in solution from boundary conditions
cond1 = int(tau0,x,-1,1) == -P;
cond2 = int(sigma,-l,l) == 0;
cond3 = int(x*sigma,-l,l) == P*(h1+ha)/2;
cond4 = subs(sigma2,x,-l) == 0;
cond5 = subs(sigma2,x,l) == 0;
cond6 = subs(tau1,x,-l) == Ga/ha*P/(E1tilde*h1);
cond7 = subs(tau1,x,l) == -Ga/ha*2*P/(E2tilde*h2);
[A,b] = equationsToMatrix([cond1 cond2 cond3 cond4 cond5 cond6 cond7]);
coeffs = (double(A)\double(b)).';
%Insert boundary conditions in general solution
vars = symvar(tau)
tau0num = subs(tau0,vars(1:7),coeffs);
tau1num = subs(tau1,vars(1:7),coeffs);
tau2num = subs(tau2,vars(1:7),coeffs);
tau3num = subs(tau3,vars(1:7),coeffs);
tau4num = subs(tau4,vars(1:7),coeffs);
tau5num = subs(tau5,vars(1:7),coeffs);
tau6num = subs(tau6,vars(1:7),coeffs);
tau7num = subs(tau7,vars(1:7),coeffs);
sigmanum = subs(sigma,vars(1:7),coeffs);
sigma2num = subs(sigma2,vars(1:7),coeffs);
% Check solution
double(int(tau0num,x,-l,l)+P)
double(int(sigmanum,x,-l,l))
double(int(x*sigmanum,-l,l) - P*(h1+ha)/2)
double(subs(sigma2num,x,-l))
double(subs(sigma2num,x,l))
double(subs(tau1num,x,-l)-Ga/ha*P/(E1tilde*h1))
double(subs(tau1num,x,l)+Ga/ha*2*P/(E2tilde*h2))
error = tau7num - Ga/ha*(4/(E1tilde*h1)+2/(E2tilde*h2))*tau5num + Eatilde/ha*12/(E1tilde*h1^3)*tau3num - (12*Eatilde*Ga/(E1tilde^2*h1^4*ha^2) + 24*Eatilde*Ga/(E1tilde*E2tilde*h1^3*h2*ha^2))*tau1num;
% Plot solution
figure(1)
fplot(error,[-l l])
figure(2)
fplot(tau0num,[-l l])
figure(3)
fplot(sigmanum,[-l l])
その他の回答 (1 件)
Torsten
2023 年 4 月 13 日
移動済み: Torsten
2023 年 4 月 13 日
A symbolic approach will lead you nowhere because you had to solve for the general roots of a polynomial of degree 7 which is impossible.
So think about a numerical approach.
In order to cope with the integral boundary conditions, I suggest you additionally solve for the functions
F1(y) = integral_{x=-l}^{x=y} tau dx
F2(y) = integral_{x=-l}^{x=y} sigma*x dx
by solving
dF1/dx = tau(x)
dF2/dx = sigma(x)*x
with the boundary conditions
F1(-l) = 0
F1(l) = -P
F2(-l) = 0
F2(l) = P/2 * (h_1+h_a)
Try bvp4c or bvp5c for a solution.
4 件のコメント
Torsten
2023 年 4 月 14 日
Look at the examples under
They should show you how to proceed.
If you encounter problems somewhere with your code, you can come back here to ask.
参考
カテゴリ
Help Center および File Exchange で Calculus についてさらに検索
製品
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!