error in matrix multiplication and integration

11 ビュー (過去 30 日間)
Milan
Milan 2022 年 10 月 27 日
コメント済み: Walter Roberson 2022 年 10 月 28 日
%%
clc;
clear;
syms x;
%pi = 180.;
% syms y_x;
% syms y_x_das;
L = 100.;
E = 29000. ;
c = 0.1*L;
d_0 = 5.;
d_1 = 2.*d_0;
d_x = 2.*d_0*(x/(2.*L));
b = 2.;
I_z = (b*d_x.^3)/12.;
G = 11000.;
A_x = b*d_x;
As = 5/6*A_x;
y_x = c*sin(2*pi*x/L);
y_x_das = diff(y_x);
theta_2 = atan(y_x_das);
Q_a = [-cos(theta_2) -sin(theta_2) 0];
Q_s = [-sin(theta_2) -cos(theta_2) 0];
Q_b = [-c*sin((2*pi*x)/L) x -1];
%%
%flexibility matrix
d1= sqrt(1 + y_x_das.^2).*((Q_a'.*Q_a)./(A_x*E));
d1_int = integral(@(x) d1(), 0, 100., 'ArrayValued', 1);
Error using superiorfloat
Inputs must be floats, namely single or double.

Error in integralCalc/iterateArrayValued (line 159)
outcls = superiorfloat(x,fxj);

Error in integralCalc/vadapt (line 130)
[q,errbnd] = iterateArrayValued(u,tinterval,pathlen);

Error in integralCalc (line 75)
[q,errbnd] = vadapt(@AtoBInvTransform,interval);

Error in integral (line 87)
Q = integralCalc(fun,a,b,opstruct);
  9 件のコメント
Milan
Milan 2022 年 10 月 28 日
編集済み: Torsten 2022 年 10 月 28 日
%unit inch, ksi,
clc;
clear;
close;
Pi = sym(pi);
syms x real
L = 100.;
E = 29000. ;
c = 0.1*L;
d_0 = 5.;
b = 2.;
d_1 = b*d_0;
d_x = @(x) 2.*d_0*(1-(x/(2.*L)));
b = 2.;
I_z = @(x) (b*d_x(x).^3)/12.;
G = 11000.;
A_x = @(x) b*d_x(x);
As = @(x) 5/6*A_x(x);
y_x = @(x) c*sin(2*Pi*x/L);
y_x_das = @(x) gradient(y_x(x))./gradient(x);
theta_2 = @(x) atan(y_x_das(x));
Q_a = @(x) [-cos(theta_2(x)) -sin(theta_2(x)) 0];
Q_s = @(x) [sin(theta_2(x)) -cos(theta_2(x)) 0];
Q_b = @(x) [-c*sin((2*Pi*x)/L) x -1];
%%
%flexibility matrix
d1 = @(x) sqrt(1 + y_x_das(x).^2).*((Q_a(x)'.*Q_a(x))./(A_x(x)*E));
d1_x = d1(x);
d1_int = int(d1_x, 1e-8, L);
d_11 = vpa(d1_int);
d2 = @(x) sqrt(1 + y_x_das(x).^2).*(Q_s(x)'.*Q_s(x))./(G*As(x));
d2_x = d2(x);
d2_int = int(d2_x, 1e-8, L);
d_22 = vpa(d2_int);
%no shear consideration
% G_noshear = Inf;
% d2_noshear = @(x) sqrt(1 + y_x_das(x).^2).*(Q_s(x)'.*Q_s(x))./(G_noshear*As(x));
% d2_x_noshear = d2_noshear(x);
% d2_int_noshear = int(d2_x, 1e-8, L);
% d_22_noshear = vpa(d2_int);
d_22_noshear = 0;
d3 = @(x) sqrt(1 + y_x_das(x).^2).*(Q_b(x)'.*Q_b(x)) ./(E*I_z(x));
d3_x = d3(x);
d3_int = int(d3_x, 1e-8, L);
d_33 = vpa(d3_int);
d = d_11+d_22+d_33; %flexibility matrix
d_noshear = d_11+d_33;
% equllibrium matrix
phi = [-1 0 0; 0 -1 0; 0 L -1];
%Siffness matrix
Kff = inv(d);
Kfs = inv(d)*phi';
Ksf = phi*inv(d);
Kss = phi*inv(d)*phi';
K = round([Kff Kfs; Ksf Kss], 2);
%no shear stiffness matrix
Kff_ns = inv(d_noshear);
Kfs_ns = inv(d_noshear)*phi';
Ksf_ns = phi*inv(d_noshear);
Kss_ns = phi*inv(d_noshear)*phi';
K_noshear = round([Kff_ns Kfs_ns; Ksf_ns Kss_ns], 2)
K_noshear = 
% K = [inv(d) inv(d).*phi';
% phi.*inv(d) phi.*inv(d).*phi'];
sdof = ([1, 2, 5]);
fdof = ([3,4,6]);
K_ff = K(fdof, fdof);
f_f = [300 100 0]';
delta_f = inv(K_ff)*f_f;
theta_z1 = round(delta_f(1,:),5);
Walter Roberson
Walter Roberson 2022 年 10 月 28 日
mat2str() will show it with just one []
Note: mat2str() may lose the bottom bit of numbers. format long g loses the bottom bit of numbers. If you need to be able to exactly reproduce the array then you will need to create your own function to convert it.

サインインしてコメントする。

回答 (0 件)

カテゴリ

Help Center および File ExchangeLinear Algebra についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by